

D4.5 Report on Machine Learning integration algorithms

Deliverable Lead UNITUS

Deliverable due date 2022/11/30

Status FINAL

Version V1.0

Page 2

DOCUMENT CONTROL PAGE

Title D4.5

Creator UNITUS

Publisher Highlander Consortium

Contributors
Giovanni Chillemi, Federica Gabbianelli, Marco

Milanesi, Daniele Pietrucci, Giovanni Vignali

[DIBAF], Balasubramanian Chandramouli [CINECA]

Type Report

Language EN

Rights Copyright “Highlander Consortium”

Audience
Public X

Restricted

Requested deadline M38

Page 3

Index

1. Introduction4

2. Premises5

2.1 GitHub & Python Package Index repository7

2.2 Pilot dataset8

3. Recursive Feature Elimination8

4. Identification and test of the best Machine Learning algorithms10

4.1 Identification of the best ML algorithm11

4.2 Model hyper-parameters optimization12

4.3 Identification of the most important features13

4.4 Identification of the most important features14

4.5 Evaluation of the identified model17

5 Conclusions22

6 Bibliography23

Page 4

1. Introduction

In the Highlander project, data (i.e. Big Data) from various sources are collected in the

Highlander Data Lake. To obtain useful information for the end-user, this huge and complex

datastore needs to be dissected and different analysis layers were implemented and tuned to

achieve the goal. A Machine Learning prototype, capable of analyzing, in an automatic way, the

new data coming in the Highlander Data Lake, and converting it into information, was set up.

The document will present each section of the developed pipeline, showing its application in

the “IoT for animal wellbeing” DApOS as case (Activity 5 - DApOS 7), as an example.

Page 5

2. Premises

The pipeline here presented is deposited in a private github repository

(https://github.com/pixpit/Highlander_ML).

The pipeline is implemented using Python language. In the repository the scripts are in two

formats: Python and Notebook. In this way the users could apply the pipeline in a HPC system

or easily run in a Jupyter Notebook. Moreover, the Jupyter Notebook reports an example about

how to run the pipeline. The pipeline has been uploaded as a package (called “HighlanderML”)

in the PyPI repository. In this way, after installing the dependencies, the user can easily install

the modules and functions to perform the Machine Learning analysis on his/her local machine

or an HPC system.

The scheme of the Machine Learning prototype was presented and reported in Highlander MS7

(Figure 1).

Based on the final scope of the analyses, specific input data of different nature (i.e. climatic

data, productive data, remote sensing, etc.) and origin are merged and analyzed together. The

final scope is to obtain a validated Machine Learning model, through the identification of the

best Machine Learning algorithm, the optimized algorithm parameters and an automatic

selection of the most important features. All the main functions used in H2O ambient or the

one here developed can work on multiple threads.

https://github.com/pixpit/Highlander_ML

Page 6

Figure 1: Schematic representation of the machine learning prototype from Highlander project.

Page 7

2.1 GitHub & Python Package Index repository

The GitHub repository, as mentioned before, contain the following file:

- “RFE_module.py” Python script, which includes the function to run “recursive feature

elimination” analysis (RFE_highlander). This file is reported in the “highlander_scripts”

directory;
- “H2O_module.py” Python script, containing the functions to run the Machine Learning

(ML) analyses. This file is reported in the “highlander_scripts” directory. In particular,

this module allows:

- to search for the best algorithm to perform the prediction; the best algorithm is

chosen using a set of different models (best_model)

- to identify the best hyper-parameters, tuned using a grid search approach

(grid_search);

- to evaluate the relative importance of all the variables in the prediction and

order them (varimp);

- to train and test the model. For all the features, starting from the most

important, the model accuracy is evaluated using the Mean Absolute Error

metric (mae_nf).

- to evaluate each feature contribution and explanation to the classification

using the SHAP algorithm (shap).

- to evaluate the feature impact in the model (explain_model)

- “Highlander_ML_notebook.ipynb” in the “Notebook” directory is a Jupyter Notebook

script, already set to perform the analyses using an example dataset. The users could

use it with any type of data. The same code is also reported in a python file code

(“Highlander_ML_analysis.py”)

- An example dataset to test the pipeline. It consists of 1000 records, 22 features (from

F_1 to F_22) and one fictitious target variable (called “TARGET”). The file is stored in the

“dataset” directory.

- The dependencies required to run the modules in a Python environment. The following

Python packages are needed: pandas>=1.3.4; numpy>=1.21.2; scikit-learn>=1.0;

h2o>=3.38.0.1. The list of packages is provided in the Github repository in the

“dependencies” directory

The Python Package Index (PyPI) is a public repository of software for the Python programming

language.

Page 8

- In the GitHub repository is stored the setup.py file. This python script contains all the

information to build a PyPI package. The setup.py file is used as input by the GitHub

workflow software (using the “Publish Python Package” function) to create a package

stored in the PyPI repository. This package is called “HighlanderML”. The user can install

the Highlander package using the pip command, with the following syntax: “pip

HighlanderML”. This installation provides all the dependencies, alongside with the

modules stored in the “highlander_script” directory in the GitHub repository.

2.2 Pilot dataset

In this report, a pilot dataset was used to show how the pipeline works. As previously reported,

we used the results from the “IoT for animal wellbeing” DApOS as case (Activity 5 - DApOS 7).

In particular, the dataset refers to Pezzata Rossa Italiana cows reared in Friuli-Venezia Giulia.

Milk data production was analyzed together with historical climatic data from the VHR-REA

dataset (Raffa et al., 2021).

In detail, 2,332,083 records (i.e. functional control - FC) were analyzed after a quality control.

The details about the quality control are reported in the Highlander M7 report. The residual of

the milk production was analyzed (see Highlander M7 report for details about the procedure).

In the pilot dataset, different climatic variables were evaluated. All the variables were measured

up to 22 days before the measurement of the production of each animal. In detail, the following

variables were analyzed: temperature, relative humidity, wind speed, cloud coverage and

precipitation. For temperature and relative humidity, the mean, minimum and maximum values

were computed for each day. In total, 198 variables were analyzed.

3. Recursive Feature Elimination

Recursive feature elimination (RFE) is a feature selection method that fits a pre-defined model

and removes the weakest feature (or features) from the entire database, until the specified

number of features is reached.

In our pipeline the Python script “RFE_module.py” performs a RFE using a

DecisionTreeRegressor, as a model. The input dataset could be split to ease the analyses if the

number of records is very high. However the RFE analyses could be repeated many times (the

default parameter is 10, but is customizable) and the consensus among the replicates give the

order of the features, from the most important to the least.

Page 9

The function result is the ordered list of all the features from the original dataset (Table 1).

Table 1: The first 10 features (i.e. climatic variables) from the pilot dataset, ordered by the mean ranking

value among 60 repetitions. In the table is reported the rank for the name of the climatic variable, the

first 3 repetitions rank, the mean and standard deviation (STD) for the 60 repetitions.

Climatic variables Rank 0 Rank 1 Rank 2 Rank … Mean STD

T_MIN_mean_day_less_22 1 2 1 1.43 0.56

T_MAX_mean_day_less_1 2 2 1 1.83 1.56

WS_KMH_mean_day_less_4 3 26 3 10.55 10.51

WS_KMH_mean_day_less_5 12 5 16 13.92 10.09

WS_KMH_mean_day_less_1 6 13 7 14.00 9.99

WS_KMH_mean_day_less_9 4 20 4 19.35 12.97

WS_KMH_mean_day_less_2 19 16 32 19.52 11.70

WS_KMH_mean_day_less_22 8 22 19 20.27 14.10

WS_KMH_mean_day_less_16 22 3 31 22.92 14.95

WS_KMH_mean_day_less_8 10 6 27 23.37 14.86

Together with the order, the mean and standard deviation (SD) are given. The data could be

plotted to understand the number of features to use in the subsequent steps (Figure 2).

Page 10

Figure 2: The plot of the ranking mean (solid blue line) and standard deviation (light blue shadow) for

each feature among 60 repetitions in an increasing order.

Using this information it is possible to identify how many features could have an effect on the

investigated target variabile. in the case of the pilot, among the 198 features 100 were selected

for the next steps.

4. Identification and test of the best Machine Learning

algorithms

After the identification of the most important features associated with the target, a series of

steps need to be performed to obtain a validated Machine Learning model. All the necessary

functions were included in the “H2O_modules.py” Python script. Hereafter the single functions

will be explained and an example of an application in the pilot dataset will be shown.

Page 11

4.1 Identification of the best ML algorithm

First of all, the search for the best Machine Learning algorithm family is done using the H2O.ai

and scikit-learn modules of Python. The function “best_model” was here implemented to ease

the user experience. H2O tests different Machine Learning algorithms (for example, Random

Forest, XGBOST, Gradient Boosting Machine - GBM), to identify the best one.

The function inputs are: 1) the dataframe (in which the rows represent the samples and the

columns are the features plus the target variable) and 2) the name of the target variable. In

addition, some H2O.ai parameters could also be set.

The output is a dataframe in which each row is a Machine Learning algorithm tested. A series

of metrics are calculated and could be used to evaluate the model. The dataframe is sorted by

RMSE (Root Mean Square Error) and the best model is the one reported in the first row (Table

2).

Table 2: The first 10 ML algorithm tested by H2O.ai from the pilot dataset. The best algorithm identified

is “Gradient Boost Machine”.

Model id Mean residual

deviance

RMSE MSE MAE

GBM_grid_1_AutoML_1_20220923_210744_model_41 1489.58 38.59 1489.58 29.17

GBM_grid_1_AutoML_1_20220923_210744_model_5 1489.74 38.60 1489.74 29.18

GBM_grid_1_AutoML_1_20220923_210744_model_105 1491.36 38.62 1491.36 29.19

GBM_grid_1_AutoML_1_20220923_210744_model_49 1492.26 38.63 1492.26 29.22

XRT_1_AutoML_1_20220923_210744 1494.79 38.66 1494.80 29.24

Column legend: Root Mean Square Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE), Root

Mean Squared Log-Error (RMSLE)

Page 12

4.2 Model hyper-parameters optimization

In this step, the best ML algorithm previously selected by the function “best_model” is

optimized. The optimization consists of tuning all parameters used by the algorithm. By tuning

the parameters, the best prediction of the target variable can be ensured. This optimization is

performed through a grid search approach, implemented in the “grid_search” function.

The inputs are the same as the previous function, namely the input dataframe and name of the

target variable. Some default values are included in the functions, as a suggestion, but specific

parameters are needed, depending on the previous function results.

The output is a dataframe in which columns report the tested hyper-parameters for each run

and a metric to evaluate the run, in this case the MAE (Mean Absolute Error). Depending on the

target variable nature, different metrics could be used. The dataframe is ordered using the MAE

and, consequently, the best hyper-parameters are reported in the first row (Table 3).

Table 3: The first 5 hyper-parameters combinations tested. The best combination is reported in the first

row and was used for the subsequent analyses.

Col sample rate Learn rate Max depth ntrees Sample rate Model ids MAE

0.6 10 27.0 100.0 1.0 gbm_grid2_model_144 29.17

0.2 100 18.0 100.0 1.0 gbm_grid2_model_184 29.17

1.0 100 18.0 200.0 1.0 gbm_grid2_model_141 29.18

1.0 100 18.0 50.0 1.0 gbm_grid2_model_195 29.18

1.0 10 27.0 100.0 0.6 gbm_grid2_model_198 29.19

The values reported in the columns are the following: 1) “Col sample rate” (train accuracy)”, “Learn rate” (depth of

the tree), “Max depth” (depht of the tree), “ntrees” (number of tree) and “Sample rate” (train accuracy): parameters

used by the Gradient Boosting Machine algorithm; 2) “Model ids”, an unique identifier for each combination of

parameters; 3) “MAE” (Mean Squared Error), the metric used to evaluate the performance of the models.

Page 13

4.3 Identification of the most important features

Using the best algorithm and parameters previously identified, the complete dataset is analyzed

with the objective to identify the most important features associated with the target variable.

In this case, a feature importance approach was applied using the “varimp” function.

The output is a table with, for each variable, the relative and scaled importances, and the

percentage of the importance (Table 4; Figure 3).

Table 4: The first 10 variables, ordered by their importance.

Variable Relative importance Scaled importance Percentage

T_MIN_mean_day_less_22 69807440.0 1.000 3.6

T_MAX_mean_day_less_1 62522792.0 0.896 3.2

WS_KMH_mean_day_less_4 30026174.0 0.430 1.5

WS_KMH_mean_day_less_1 25837002.0 0.370 1.3

WS_KMH_mean_day_less_5 25815808.0 0.370 1.3

WS_KMH_mean_day_less_2 25184130.0 0.361 1.3

RH_MIN_mean_day_less_2 25139532.0 0.360 1.3

WS_KMH_mean_day_less_9 23876186.0 0.342 1.2

T_MIN_mean_day_less_21 23448846.0 0.335 1.2

Page 14

WS_KMH_mean_day_less_16 23101368.0 0.331 1.2

The columns report the following information: 1) “Variable”, the name of the variable; 2) “Relative importance”:

the importance evaluated by the H2O package, the greater is the value the greatest is the variable importance; 3)

“Scaled importance”: the relative importance, scaled from 0 to 1; 4) “Percentage”: the importance of the variable

expressed as a percentage

Figure 3: The plot of the first 10 variables, ordered by their importance. The x-axis represents the scaled

feature importance.

4.4 Identification of the most important features

To identify the minimal subset of the variable for the best algorithm and parameters previously

identified, the previously ordered feature will be analyzed, from 2 (the n_feature_start

parameter controls it) to the total number of features (the n_feature_end parameter control

it), using the “mae_nf” function. The objective is to identify the number of variables that

minimize the MAE, adding 1 or more variables (the step parameter controls it) at the time. In

other words, the algorithm is trained and evaluated systematically, increasing the features at

each step. Since the features are sorted using the var_imp function, it is possible to identify the

minimal set of variables that can perform well as the dataset trained with all the variables. This

process allows the elimination of the uninformative features, which are usually the ones with

the lowest importance. The output is a table with the number of features tested and the

corresponding MAE value (Table 5). To speed up the process, we did this analysis in two rounds:

in the first one using a window step of 5, to find the zone where the MAE decreases, reaching a

Page 15

plateau (Figure 4); in the second round, with a step of 1, to find the exact number of features

to select (Figure 5). The final number of features chosen in the pilot dataset is 15.

Table 5: The table obtained with the “mae_nf” function. The MAE value is reported for each step, in this

case from 2 to 100 features with a step of 5 value.

MAE Number of feature

29.49 2

29.44 7

29.30 12

29.24 17

29.22 22

29.20 27

29.19 32

29.18 37

29.17 42

29.17 47

29.17 52

The obtained values could be plotted (Figure 4) and used to identify the minimum, using for

example the elbow method.

Page 16

Figure 4: The plot of the MAE values from 2 to 100 with step 5, in the pilot dataset (i.e. the same reported

in Table 5). The chosen window (red dashed line) for the next evaluation was from 10 to 20.

Page 17

Figure 5: The plot of the MAE values from 10 to 20 (step 1) obtained in the pilot dataset. The chosen

number of most important features is 15 (red dashed line).

4.5 Evaluation of the identified model

Finally, a new dataset with only the most important features was created. In the case of the

pilot, 15 variables were selected. This new dataset with the best algorithm and parameters is

the result of this pipeline.

The “varimp” function could be used to evaluate the features importance. Compared with the

previous analyses, the reduced number of features could influence the rank and relative

importance (Figure 6).

Page 18

Figure 6: The plot of the 15 previously selected variables, ordered by their importance. The x-axis

represents the scaled feature importance.

In addition, the SHAP algorithm (SHapley Additive exPlanations) was implemented in the “shap”

function, to allow the explainability of each feature in the classification (Lundeberg et al., 2017).

The function output is a plot, called “SHAP” or “swarm” plot (Figure 7).

Page 19

Figure 7: The SHAP graph with the feature explainability for the 15 features selected, ordered by their

importance. The x-axis represents the feature, the y-axis represents the SHAP value. Each point is a

sample (the residual of an animal production) and its color represents the normalized value for each

feature. The values are normalized to compare different features with different units of measurement.

The minimum value that the feature can assume is 0, while the maximum is 1. The normalized value is

colored using a gradient color scale, from blue (0) to purple (1). If a point is associated with a positive

SHAP value, then the feature contributes positively to the prediction. Conversely, if a point is associated

with a negative SHAP value, then the feature contributes negatively to the prediction. For example, high

values of “T_MAX_mean_day_less_1'' have a high positive contribution to the prediction, while low

values have a high negative contribution to the prediction.

Finally, some interesting and summarizing statistics about the identified model could be

obtained using the “explain_model” function. In particular: Residual Analysis (Miles, 2014)

(Figure 8), Variance Importance (Inglis et al., 2022), SHAP summary (Lundeberg et al., 2017),

Page 20

Partial Dependence plots (Figure 9) and Individual Condition Expectation plots (Goldstein et al.,

2015) (Figure 10) are produced as output.

Figure 8: The Residual Analysis graph from the pilot dataset.

Figure 9: One of the Partial Dependence plot from the pilot dataset.

Page 21

Figure 10: One of the Individual Condition Expectation plot from the pilot dataset.

Page 22

5 Conclusions

In this document we reported the Machine Learning integration algorithms developed in the

Highlander project.

The pipeline is able to prepare the input data and identify the best Machine Learning model to

analyze them. Once the best model is identified, it is optimized using a grid search approach.

Finally, a feature selection is performed: the importance of each variable is evaluated, and the

uninformative variables are removed. In this way, the model is simpler to run, and the most

relevant variables can be studied to understand their role in the prediction. In addition, it is

possible to perform some hypotheses of how the features (the climatic variables) can affect the

target variable (the milk yield). In fact, the pipeline generates several graphs (i.e. residual plot,

SHAP plot, Individual Conditional Expectation) that can help the user to interpret the results of

the prediction.

These algorithms were applied in some of the Highlander DApOS. Here, as reported, was

presented the results from a pilot analysis from “IoT for animal wellbeing” DApOS (number 7).

Page 23

6 Bibliography

Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015). Peeking Inside the Black Box:

Visualizing Statistical Learning With Plots of Individual Conditional Expectation.

Journal of Computational and Graphical Statistics.

https://doi.org/10.1080/10618600.2014.907095

Inglis, A., Parnell, A., & Hurley, C. B. (2022). Visualizing Variable Importance and Variable

Interaction Effects in Machine Learning Models. Journal of Computational and

Graphical Statistics, 31(3), 766–778.

https://doi.org/10.1080/10618600.2021.2007935

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions.

Advances in Neural Information Processing Systems, 2017-Decem, 4766–4775.

Miles, J. (2014). Residual Plot. In Wiley StatsRef: Statistics Reference Online.

https://doi.org/10.1002/9781118445112.stat06619

Raffa, M., Reder, A., Marras, G. F., Mancini, M., Scipione, G., Santini, M., & Mercogliano, P.

(2021). VHR-REA_IT dataset: Very high resolution dynamical downscaling of ERA5

reanalysis over Italy by COSMO-CLM. Data, 6(8).

https://doi.org/10.3390/data6080088

https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1080/10618600.2021.2007935
https://doi.org/10.1002/9781118445112.stat06619
https://doi.org/10.3390/data6080088

