

The role of HPC and open climate data for climateproofing water and natural resources management

Highlander

High performance computing to support smart land services

Gabriella Scipione, HPC Department, CINECA

October 26th, 2021

Connecting European Facilities - Telecom

CLIMATE-AGRICOLTURE

National Open Data Portal of Climate data

New services for a smart agricolture management:

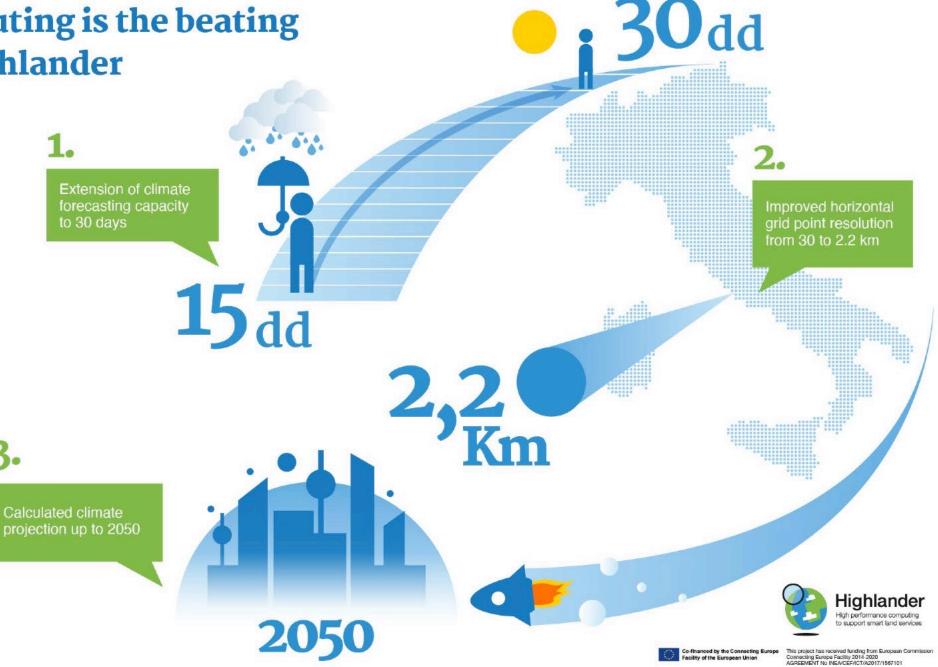
- Soil erosion over Italy (CMCC)
- Crop water requirement sub-seasonal forecasts (ARPAE)

Coordinator

3

Supercomputing is the beating heart of Highlander

1. To increase the forecast from

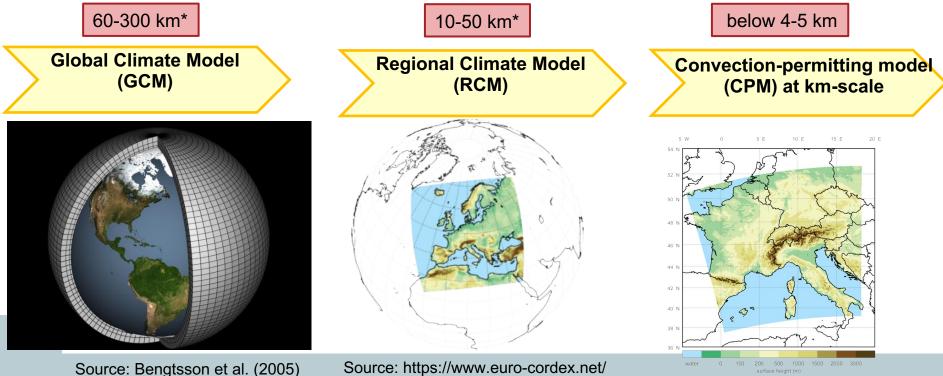

15 to 30 days and increase the resolution to 2.2 km, 6 million hours of HPC calculations were used

2.

New climate projections will be much more accurate thanks to HPC

An additional 8 million

hours of supercomputing will be needed to realise projections up to 2050



Transition to convection-permitting models

Highlander provides climate dataset with very high resolution (among 1-3 km). These so called "convection-permitting" model (CPM) represents a step forward in Regional Climate Model ability to simulate small scale behaviour seen in the real atmosphere, in particular atmospheric convection, and the influence of mountains, coastlines and urban areas.

As a result, **the CPM is expected to provide access to detailed climate information on hourly timescales**, important for small-scale weather features that affect **flooding in summer**, and also on local (kilometer) scales, improving our understanding of **climate change in cities**.

* Source: Kendon et al. (2019)

Why convection-permitting models?

"Convective" storms cause some of Earth's most dramatic weather, including extreme rainfall, hail, lightning and severe wind gusts.

Highlander High performance computing to support smart land services

So being able to identify phenomena like hails, EE etc... at high resolution leads to great added value.

Among the worst-hit parts of Germany, the area of the city of Cologne known as Köln-Stammheim saw more than 153mm of rain on 14 July. To put that in context, it is six times higher than the average heaviest rainfall days for the area in July.

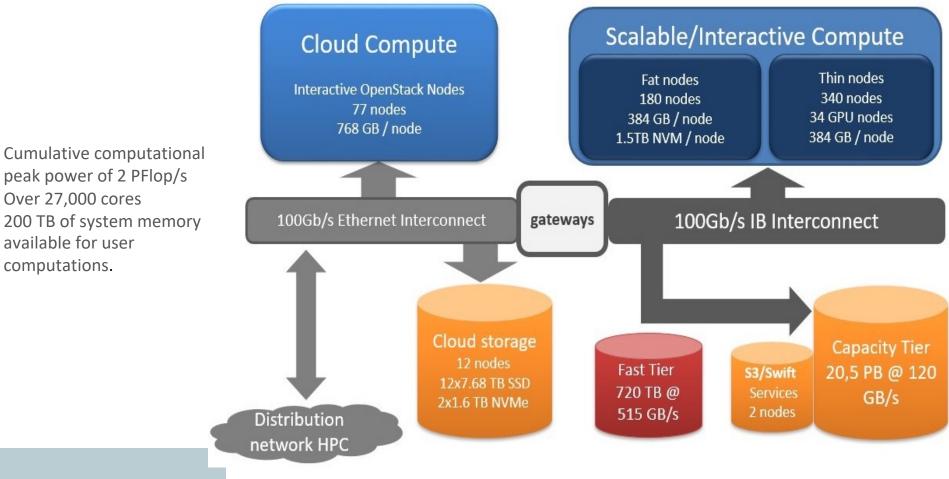
Worst-hit areas saw rainfall levels far above average high for July 30-year average high and 14 July 2021 compared

VHR-REA_IT dataset for HIGHLANDER project

		h performance co support smart land	
Long-Name	Short-Name	Units	
2m temperature	T_2M	K	
2m dew point temperature	TD_2M	К	
Total precipitation	TOT_PREC	kg m ⁻²	
U-component of 10m wind	U_10M	m s ⁻¹	
V-component of 10m wind	V_10M	m s ⁻¹	
2m maximum temperature	TMAX_2M	K	
2m minimum temperature	TMIN_2M	K	
mean sea level pressure	PMSL	Ра	
specific humidity	QV_2M	kg kg⁻¹	
total cloud cover	CLCT	1	
Surface Evaporation	AEVAP_S	kg m ⁻²	
Averaged surface net downward shortwave radiation	ASOB_S	₩ m ⁻²	
Averaged surface net downward longwave radiation	ATHB_S	W m ⁻²	
Surface snow amount	W_SNOW	m	
Soil (multi levels) water content	W_SO	m	

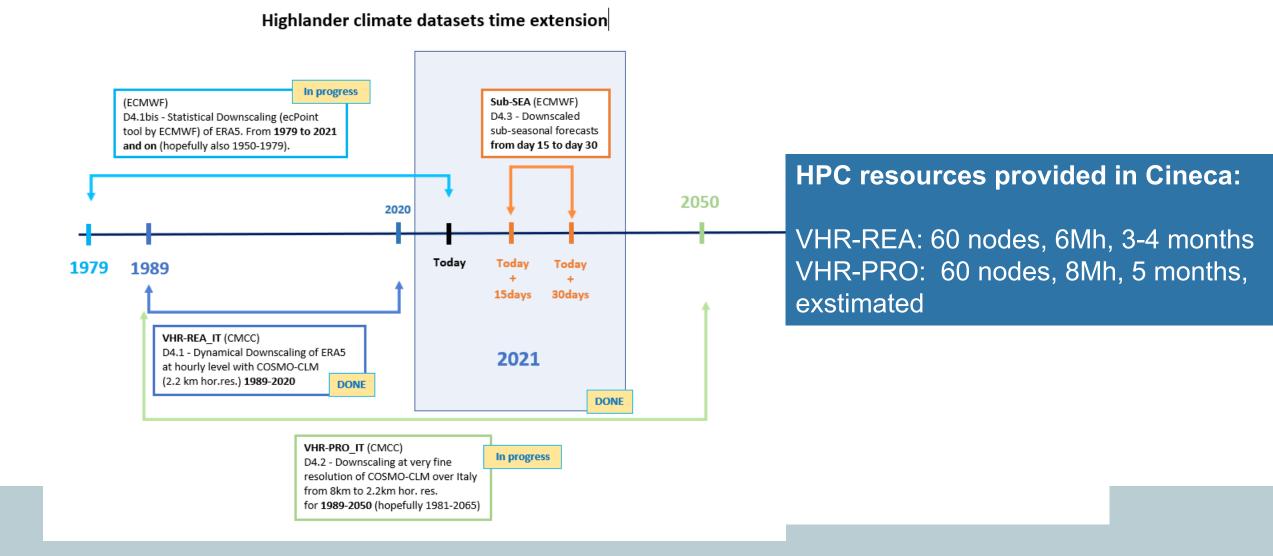
Raffa M., Reder A., Marras G., Mancini M., Scipione G., Santini M., and Mercogliano P., VHR-REA_IT dataset: very high resolution dynamical downscaling of ERA5 reanalysis over Italy by COSMO-CLM, 2021, Data, Volume 6, Issue 8, DOI: 10.3390/data6080088

Торіс	Very high-resolution dynamical downscaling of ERA5 reanalysis over Italy		
Main objective	Providing VHR climate data over Italy <u>as input for</u> <u>downstream services</u> (e.g., for decision support system), in different sectors highly affected by changes in climate trends, variability, and extreme events		
Domain	Italian Peninsula		
Periods	1989-2020 evaluation		
Model	COSMO-CLM		
Spatial Resolution	2.2 km		
НРС	GALILEO (Cineca)		



computations.

G100: an infrastructure for data analysis and storage, scalable computing, and cloud computing. High performance computing to support smart land service Highlander


Co-funded by the European ICEI project, system engineered by DELL.

Climate datasets time extension on Cineca HPC system

High performance computing to support smart land services

Urban parameterization

8' W

8

Highlander

to support smart land service

°C

1.6

1.2

0.8

0.4

0

-0.4

-0.8

-1.2

-1.6

24 E

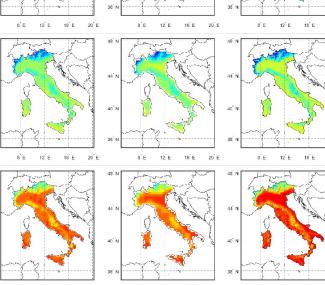
8' E

16'E

In order to look also at **urban context**, the climate simulation running in Highlander with COSMO-CLM also **includes specifical parameterization** translating urban-canopy thermal parameters into bulk parameters describing urban features:

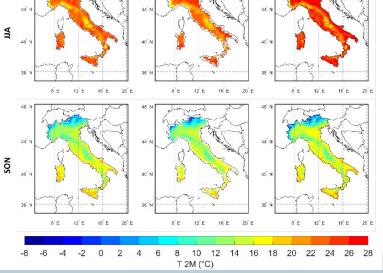
Input -> Anthropogenic heat flux (AHF) and Impervious surface area (ISA)

ä


MAM

Co-financed by the Connecting Europe Facility of the European Union

VHR-REA_IT dataset for HIGHLANDER project


E-OBS

VHR-REA IT

ERA5

- E-OBS gridded dataset at about 11 km oh horizontal resolution
- ERA5 re-analysis provided by Copernicus @31 km
- The simulation at 2 km is able to see the complexity of the Italian climate very well.

		Bias (°C)				$\sigma_{mod}/2$	$\sigma_{\rm obs}$	
	DJF	MAM	JJA	SON	DJF	MAM	JJA	SON
E-OBS	5.5	11.6	21.3	14,0	4.1	3.6	3.8	4.1
ERA5	-0.6	-0.2	0.0	-0.3	1.1	1.0	1.0	1.0
VHR-REA_IT	-0.7	0.5	1.7	0.3	1.0	1.2	1.2	1.1

	ID	SU	FD	TR
	(days/year)	(days/year)	(days/year)	(days/year)
E-OBS	8	89	41	25
ERA5	10	75	42	32
VHR-REA_IT	12	106	34	54

ID: Number of icing days, count of days when TX (daily maximum temperature) < 0 °C

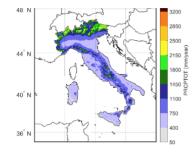
Highlander

High performance computing to support smart land services

SU: Number of summer days, count of days when TX (daily maximum temperature) > 25°C

FD: Number of frost days, count of days when TN (daily minimum temperature) < 0°C

TR: number of tropical nights, count of days when TN (daily minimum temperature) > 20 °C


Climate simulations at very high spatial detail over Italy

Home Docs About Contact Us

ERA5 downscaling @2.2 km over Italy

Home / ERA5 downscaling @2.2 km over Italy

Dataset information

The dataset contains dynamically downscaled ERA5 reanalysis, originally available at ≈31 km x 31 km horizontal resolution, to 2.2 km x 2.2 km. Dynamical downscaling has been conducted directly for the project (foreground) through Regional Climate Model (RCM) COSMO5.0_CLM9 e INT2LM 2.06. The RCM COSMO CLM is currently developed by the CLM-Community, with which CMCC collaborates since 2008 (additional info on COSMO CLM). The temporal resolution of outputs is hourly (like for ERA5). Runs cover the whole Italian territory (and neighbouring areas according to the necessary computation boundary) so to provide a very detailed (in terms of space-time resolution) and comprehensive (in terms of meteorological fields) dataset of climatological data

for at least the last 30 years (01/1989-10/2020). Typical use of similar dataset is (applied) research and downstream services (e.g. for decision support system)

The temporal coverage of the dataset is from 01/01/1989 00:00 to 31/10/2020 23:00 and the temporal resolution is 1 hour. All output variables (reported in the following table) are on single levels except soil water content that is provided for 7 soil levels.

Contact:

Paola Mercogliano paola.mercogliano@cmcc.it Webpage License: Dataset License Publication date: 2021-08-01 Update frequency:

None DOI:

https://doi.org/10.25424/cmcc/era5-2

- Currently are on going simulation providing climate projections over Italy at 2.2 km over Galileo super computer
- The use of the COSMO CLM model is completely free of charge for all research applications. The use of COSMO-CLM generated data within HIGHLANDER is free for partners (acting as intermediate users) for the project's purposes; the use for other purposes (and by further external end-users) requires an appropriate disclaimer, including reference to COPERNICUS, CINECA, CLM Assembly and CMCC,

Issues of convection-permitting models

to support smart land services

Issues of feasibility could be due to:

- **high-resolution data** are needed in CPMs to describe the details of the physiography of the region and associated **changes over time** (i.e. land use, land cover, urbanization);
- the computing and **data storage** requirements of CPM climate simulations;
- the increase in **computational requirements** of **2–3 orders** of magnitude compared to coarser resolution RCMs.
- the availability of very high resolution, **high quality data sets** and **observations** for the assessment and evaluation of the models, which is not there for most regions of the world;

2

Highlander

Data Delivery System

R Factor

Administrative Italy Physical:

User Selected

Datasets Applications My Requests

Indicators of rainfall erosivity (R factor) and soil loss (SL) amount

R-factor [MJ mm ha-1

Indicator

R Factor

Administrative

Physical:

User Selected:

R-factor

[MJ mm ha-1 h

1000-1501 1500-2001 2000-2501 2500-3000 3000-4000 4000-6000 6000-8000

Soil erosion over Italy

- Using very high resolution precipitation data_{Highlander}

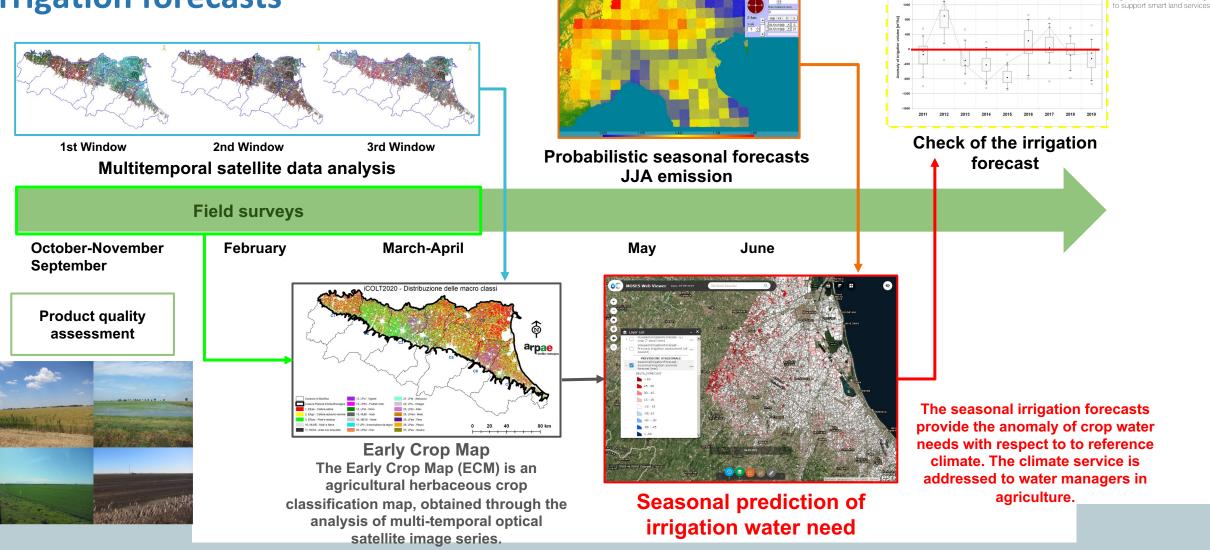
eriod: 1991-2020

Period: 1991-2020

- 12 empirical models to calculate R

Crop water requirement sub-seasonal forecasts (ARPAE)

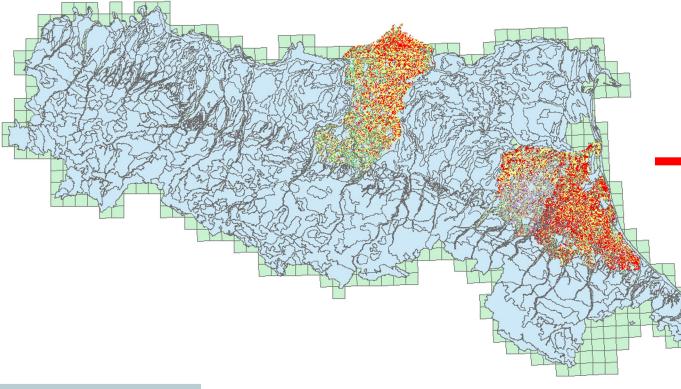
•This climate service is conceived to support **agricultural water providing organizations** like e.g. the Italian **Consorzi di bonifica** (land reclamation and irrigation boards)


• Water providers need support in their decision-making for both water procurement and water allocation to increase efficiency and reduce irrigation water and energy consumption.

•This climate service offers technical support producing every month seasonal forecasts (+3 months), every week subseasonal forecasts (+1 month) and every day weekly forecasts (+7 days) of water irrigation demand for specific areas during the irrigation season ranging from April to September.

•The pilot case study includes 3 out of eight **Consorzi di Bonifica** in Emilia-Romagna region (Consorzio di Bonifica della Burana, della Romagna e della Renana).

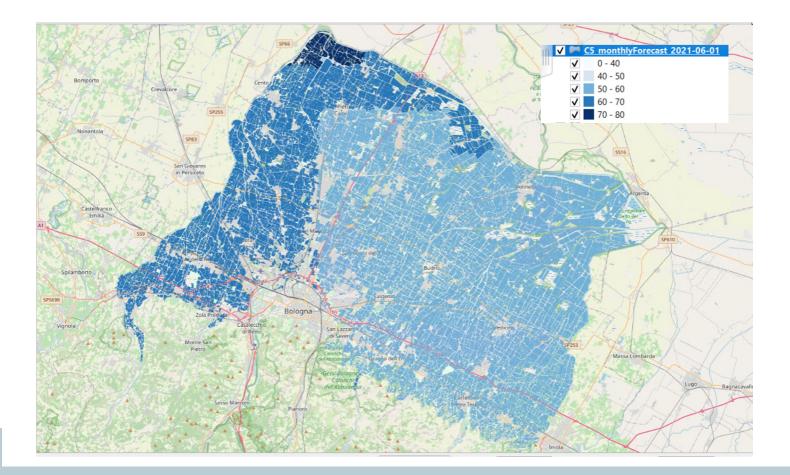
Climate Service of seasonal irrigation forecasts


Highlander

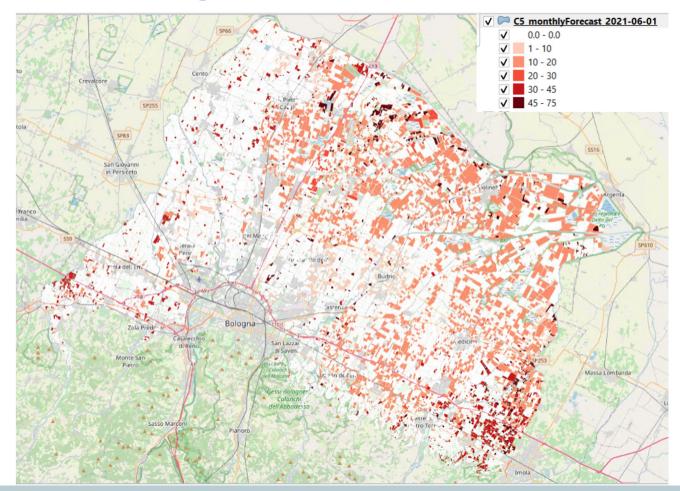
High performance computing

Input Data

- + Gridded weather data
- + Gridded weather forecasts
- + Regional Soil Map
- + Early crop Map
- + Criteria water balance model


CRITERIA-1D

MC/CRITE		3 contributors	.∰ GPL-3.0
Branch: master New pull request		Find	file Clone or downl
ftomei mapgraphics debug		Latest co	mmit 4a614ee 18 hour
github/ISSUE_TEMPLATE	Update issue templates		4 months
CRITERIA3D	add CRITERIA3D		5 days
DATA	path		20 hours
HEAT1D	restored previous version heat1d		10 months
Makeall_CRITERIA1D	rename test project criteria1D		3 months
Makeall_PRAGA	clean PRAGA project		8 days
MapGraphics	mapgraphics debug		18 hours
PRAGA	warning fixed		19 hours
TestCriteria1D	criteria-1d clean		16 days
TestSolarRadiation	fix testSolar		6 days
TestSunPosition	fix testSolar		6 days
Climate	warning fixed		18 hours
Crit3dDate	warning fixed		19 hours
💼 criteria1D	clean parameters		14 days
🖬 crop	clean crop library		14 days
dbMeteoGrid	fix load loadGridHourlyVar to take 00:00 day	after	21 hours


Monthly forecast of precipitation - June 2021

Monthly forecast of irrigation - June 2021

visit highlanderproject.eu

follow #HIGHLANDERPROJECT

info

info@highlanderproject.eu

Thank you

Highlander

High performance computing to support smart land services