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1 Introduction 

This project deliverable provides a high-level description of the data we are dealing with in the 

different Highlander DApOS from the point of view of the harmonization requirement.  

Access, analyse and produce data homogenously saves time and money, avoids mistakes and 

helps the comprehension of the results. Standard specifications are designed to achieve these 

goals and Highlander project strongly leans on available international standards and, especially, 

on those regarding spatial information, furthermore, following the principles and directives of 

the European INSPIRE project. 

In situ and remote sensing data are the two main types of data that are considered in the 

document: we will take into account the physical data format, the protocols and the service 

model used to access input data or publish results. 

Using standards helps data harmonization, but it’s not enough: almost every standard 

specification lives a certain degree of freedom especially at the semantic level, thus we’ll show 

and explain some peculiar choices that fill these specification gaps. 

Chapter 2 deals with IoT data coming covering three different scenarios (tree growth, animals 

health, wildfires), but managed in similar way. Chapter 3 covers the weather data and chapter 

4 remote sensing images gathered by the multispectral sensor of Sentinel 2 and the SAR data 

of Sentinel 1 instrument. 
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2 IoT data harmonization 

Internet of Things (IoT) consists of smart devices that communicate with each other. It enables 

these devices to collect and exchange data and offers excellent potential to collect time-series 

data for improving situational awareness. 

The term “Internet of Things” (IoT) was first used in 1999 by British technology pioneer Kevin 

Ashton to describe a system in which objects in the physical world could be connected to the 

Internet by sensors. Ashton coined the term to illustrate the power of connecting Radio-

Frequency Identification (RFID) tags used in corporate supply chains to the Internet in order to 

count and track goods without the need for human intervention. Today, the Internet of Things 

has become a popular term for describing scenarios in which Internet connectivity and 

computing capability extend to a variety of objects, devices, sensors, and everyday items. 

Monitoring a single sensor alone might not offer much benefit; however, the monitoring of 

many sensors targeted at a linked causality brings valuable insights. If these sensors are 

connected to a network, one speaks of the Internet of Things (IoT), which is rapidly growing due 

to narrow production costs and huge potential in the field. 

This offers the ability to measure, infer and understand environmental indicators, from delicate 

ecologies and natural resources to urban environments. The proliferation of these devices in a 

communicating–actuating network creates the Internet of Things (IoT), wherein sensors and 

actuators blend seamlessly with the environment around us, and the information is shared 

across platforms in order to develop a common operating picture. 

IoT technology offers the possibility to transform agriculture, industry, and energy production 

and distribution by increasing the availability of information along the value chain of production 

using networked sensors. However, IoT raises many issues and challenges caused by a 

splintered sensor manufacturer landscape, data comes in various structures, incompatible 

protocols and unclear semantics. To tackle these challenges a well-defined interface, from 

where uniform data can be queried, is necessary. The Open Geospatial Consortium (OGC) has 

recognized this demand and developed the SensorThings API standard, an open, unified way 

to interconnect devices throughout the IoT. 

The SensorThings API is a standard for the collection, storage and retrieval of time-series data.  

The standard defines a model for sensor data and its metadata, as well as an interface for both 

data storage and retrieval. The service can be queried with powerful filters, including geospatial 

search possibilities. The goal of the SensorThings API is to offer a unified way for the usage of 

sensor-data and to facilitate the development of data-driven applications. 
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2.1 OGC:STA – SensorThings API 

Sensor data have much to do with geographic data since they most of them comes from stations 

that have a specific location on the surface of Earth and/or refers to a specific area, point or, 

generally speaking, to a spatial feature.  In situ observation data falls into this category as well 

as remote sensing data are very similar to satellite or aerial surveys images, even if the time 

dimension plays a very important role and so does the multidimensionality of the observed 

data.  

There are also some kind of observations that are more difficult to assimilate to common 

geographic data, like data registered by moving sensors (like sounding balloon or ships or other 

vehicles on which sensors can be mounted) or remote sensing data that refers to volumes 

instead of surfaces.  

For this reason, OGC has tackled the topic of sensor data in the larger context of geographic 

data, assembling a suite of standards called Sensor Web Enablement (SWE) and has tried to 

harmonize common concepts and to use the same protocols and encodings used for the better-

known spatial services. 

This suite has first hosted a conceptual model for observations and forecasts called O&M 

(Observations and Measurements) that become a ISO abstract specification and then a XML 

implementation that has been used to code the entities transferred by the Sensor Observation 

Service (SOS). Together with O&M, another coding specification has been released to describe 

sensors and, generally, computational processes used in a previous or in a following phase of 

the measurement. 

The formal definition of SOS was defined likewise WMS, WFS or the other OWS (OGC Web 

Services), thus having a SOAP binding, an XML payload, a GetCapabilities operation for self-

description and several other different operations. 

SensorThings API (STA) is the evolution of the OGC:SOS Sensor Observation Service that 

addresses data access for the Internet of Things (IoT).  

The vision of IoT is that of devices all over the world directly connected to the Internet to allow 

data retrieval and control.  

This OGC standard is actually divided into two parts: the former dealing with access to data 

(Sensing Profile) and the latter is about control of devices (Tasking Profile) and in the context 

of Highlander we can ignore it. 
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SensorThings API provides a RESTful, JSON encoded API to retrieve data and metadata about 

‘things’ that generate streams of data. The underlying information/resource model for the API 

uses Observation and Measures (O&M) and has been influenced by the other Sensor Web 

Enablement (SWE) standards. 

The API follows patterns defined by the OData protocol. Table 1 shows the main differences 

between the previous standard SOS. 

Feature SensorThing SOS 

Encoding JSON XML 

Architectural Style Resource Oriented Architecture Service Oriented Architecture 

Binding REST SOAP 

Pagination $top/$skip/$next Link Not supported 

Pub/Sub Support MQTT and SensorThings MQTT 
Extension 

Not supported 

OGC model link Location entity Confusion between feature and 
feature of interest 

Insert new Sensors and 
Observations 

HTTP POST SOS specific interface: 
RegisterSensor() and 
InsertObservation() 

Deleting Existing Sensors HTTP DELETE SOS specific interface: 
DeleteSensor() 

Updating Properties of Existing 
Sensors or Observations 

HTTP PATCH and JSON PATCH Not supported 

Deleting Existing Observations HTTP DELETE Not supported 

Linked Data Support JSON-LD Not supported 

Table 1 - MAIN DIFFERENCES BETWEEN STA AND SOS 

2.1.1 Data model 

SensorThings splits the O&M model across two classes: Datastream and Observation. 

Datastreams are the top-level class with a subset of the O&M Observation properties: 

observedProperty, resultTime, phenomenonTime. The observations property is analogous to 

result in the OM_Observation type, but in this case contains a set of Observation objects. Each 

of these is typed according to its observation type from O&M (Measurement, Geometry etc.). 
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The OGC SensorThings API data model not only covers plain sensor measurements, but also 

metadata like the unit of the measurement, a sensor description or a location. The metadata is 

connected to the original data stream. 

The data elements are linked to each other enabling the user to find all necessary information 

of interest. The data model consists of eight entities, including properties and relations, which 

are shown in Figure 1.  

 

Figure 1 - SensorThings data model (Open Geospatial Consortium, 2016) 

A Thing is a virtual or physical object. Depending on the use-case, the Thing can be the object 

being observed, like a river section, or the sensor platform, such as a satellite. Location 

describes the position of a Thing. A position can be described through geographic locations, 

encoded as points or areas. Symbolic locations, like a postal address, are possible, too. The 

HistoricalLocation is the link between a Thing and a Location, with the time indicating when the 

Thing was in a certain Location. A moving Sensor has several HistoricalLocations. A motionless 

Thing has none. This is defined through the SensorThings API, where the HistoricalLocation is 

created, when the Thing moves for the first time. A Sensor generates the data, which is 

described through the OGC SensorThings API Data Model. A Sensor can collect multiple 

Datastreams. A weather station for example can collect both temperature and humidity; in this 
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example, the Sensor weather station would have two entities Datastream, one for each 

temperature and humidity. Observation contains the measurement made by a Sensor. An 

ObservedProperty is a characteristic of the FeatureOfInterest that is observed by a Sensor. For 

example, the water level in a river, or its temperature. A Datastream unites Observations of an 

ObservedProperty, which were made by a Sensor and are linked to a Thing. The 

FeatureOfInterest can be the geographic area or location for which an Observation was made. 

This can be the same as the Location of the Thing, which is often the case for in-situ sensing. In 

the case of remote sensing, the FeatureOfInterest can be different from the location of the 

Thing, dependent on what is chosen as Thing. The FeatureOfInterest is a geographical point or 

a polygon encompassing an area or volume, usually encoded in the format GeoJSON. The 

relations between all these entities are described through the data model; this ensures finding 

all data entities that belong to another and only make sense in their own context. 

2.1.2 REST 

The OGC SensorThings API offers a RESTful interface for accessing the stored data. The REST 

programming paradigm is a well-known approach for realizing distributed systems. It is based 

on top of the Hypertext Transfer Protocol (HTTP), which forms the basis of the World Wide 

Web. REST is used for inter-machine communication and is widespread around web services. 

Alternatives are for example SOAP or Remote Procedure Calls. 

The idea of REST was developed by Roy Thomas Fielding, published in his dissertation in 

(Fielding, 2000). 

Fielding presents principles, which every REST-service must follow without suggesting how to 

implement them. The principles are described in the following. The first principle is the Client-

Server Architecture, known from the World-Wide-Web. A server offers a service, which can be 

requested by a client. Through the usage of the widespread HTTP-protocol, a REST client 

implementation is available for nearly every programming language. The second characteristic 

of a RESTful service is its statelessness: every message sent to a REST service must contain all 

information needed to process this request. This brings two benefits: firstly, the service can be 

scaled according to the required usage. Secondly, it decreases complexity, since all information 

is summarized and no application state needs to be shared between two requests. Other than 

its alternatives, REST demands unified interfaces. This contains for example the addressing 

scheme. Every entity in REST has to be uniquely identifiable, which usually is implemented 

through Uniform Resource Locators (URLs). The representation of entities is often achieved 

through JSON. Requests to the server are transmitted via HTTP. Thus, the HTTP-methods GET, 

POST, PUT, PATCH and DELETE are used to interact with the server. Hereby, GET is used to 
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request information. To create a new instance of an entity the POST operation is used. By 

sending PUT (overriding a whole entity) or PATCH (overriding only provided attributes) 

messages, existing entities can be modified. DELETE is finally used to remove entities. For the 

SensorThings API, this means when entering the main URL of a SensorThings API server in a web 

browser, a GET request is issued to the server. The response of the server will contain a JSON 

file as shown in Figure 2. 

 

Figure 2 - Response from the STA server base URL 
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The response contains all data model entities, as well as their URLs. Through these URLs, each 

individual on the server is addressable. Analogous to fetching data, an instance can be created, 

modified or deleted by sending a POST, PUT, PATCH or DELETE command to the appropriate 

URL. Since the database can contain a large amount of data, only a subset of all available data 

is returned for a GET command. This prevents both the server, as well as the client from an 

overload. Further data is sent upon request. 

2.1.3 ODATA 

The previous section showed how data can be retrieved and modified by using the REST 

interface. For many applications, it is not sufficient to retrieve all available data. Conditional 

upon the large variety of stored data, powerful and expressive filter mechanisms are required 

to receive the data of interest. In the SensorThings API, these are realized by applying the Open 

Data Protocol (OData), which is standardized by the Organization for the Advancement of 

Structured Information Standards (OASIS). It allows projections and filters similar to the 

Structured Query Language (SQL), which are specified as query strings in the URL. Projections 

can be done by naming the queried attributes in the $select parameter. For example, 

/Things?$select=@iot.id, description will only select the id and the description of Things. 

By passing the $filter parameter, it is possible to query for specific results. For example, 

/Observations?$filter=result gt 5 will return all observations that have a result value greater 

than 5. A wide range of filtering operators are supported; an exemplary list of supported 

functions is shown in Figure 3. 

 

Figure 3 - Exemplary list of functions that can be used with OData in the URL of requests 

2.1.4 MQTT 

Message Queuing Telemetry Transport (MQTT) is an open-source protocol standardized by 

OASIS that follows the publisher-subscriber pattern. Compared to other P&S protocols, MQTT 

is lightweight and minimises the network bandwidth and the device resource requirements, so 

it is suited for collecting the data of IoT-sensors.  
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By using this pattern, subscribers can register to a topic, which broadcasts information they are 

interested in. The information is initially provided by a publisher that sends a message to the 

corresponding topic as soon as it gets available. A message broker (included in a SensorThings 

API compliant server) takes care of the subscriptions and forwards the messages to all the 

subscribers registered to the topic. A topic is a string that can have several hierarchical levels, 

separated by a slash. Through this, a client receives only the information published within these 

topics. The naming of the topics is analogue to the URLs of the entities in the SensorThings API 

implementation. 

An implementation of the SensorThings API offers, next to the RESTful HTTP interface, an 

additional MQTT interface. This interface is two-folded: that is, the server can act as a subscriber 

towards a sensor that publishes its observations, collect these data and store them. On the 

other side, a client, that could be a processing component, can subscribe to a server topic 

corresponding to this datastream to get the observations and, for example, trigger some action 

when a threshold is reached. It’s not mandatory to use MQTT on both side of the data flow, i.e. 

the observations could be ingested into the server via HTTP channel. 

A possible use case, suitable with the Natural Parks scenario, could be that of the battery 

voltage measures that each TT+ device sends to the server, along with the other observations, 

and a process that listens to the corresponding MQTT topics and that triggers an alert, like an 

email, as soon as the voltage falls under a prefixed value.  Since TT+  data do not arrive into the 

server with a very high frequency, here the plus is mainly that clients do not have to poll server 

to gather new data: it’s the  MQTT protocol that implements a push model.   

 

Figure 4 - Simple use of the MQTT broker  
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2.2 Natural parks IoT data 

The goal of this DApOS is to analyse tree functional biodiversity by collecting a bunch of 

biological indicators of the vital functions of trees in a forest environment. These data will be 

collected by two clusters of Tree-Talker+ sensors. Each cluster is formed by 25 TT+ devices and 

monitors respectively a group of beeches and one of spruces; both are deployed in Val Canali.   

 

Figure 5 - TreeTalker+ device on the left image (battery pack is the lower box). TT cloud transmitter with an additional solar 
panel in the top right image. A portion of a deployed TT+ cluster in the bottom right image. 

Tree-Talker device version “TT+” measures simultaneously important individual tree scale eco-

physiological parameters as well as some additional ecosystem-related variables.  

Key parameters are: 

• Tree radial growth, as an indicator of photosynthetic carbon allocation in biomass 

• Sap flow, as an indicator of tree transpiration and functionality of xylem transport 

• Xylem moisture content as indicator of hydraulic functionality 

• Light penetration in the canopy in terms of fractional absorbed radiation 

• Light spectral components related to foliage dieback and physiology 

• Tree stability parameters to allow real time forecasts of potential tree fallings. 

• Additional parameters such as air relative humidity and air temperature will be also 

monitored at high frequency to have comparable time scale between abiotic 

parameters and short-term plant responses. 

The Tree-Talker devices are connected by using LoRa protocol of radio communication to the 

gateway TT-Cloud. TT-Cloud can receive and store data up to 48 devices in one cluster (a 

maximum of 20-30 is suggested in practice to avoid data collision) and data transmission is 
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typically set at hourly frequency although customizable. The TT-Cloud is in turn connected to 

the internet via GPRS network and sends data to a computer server. TT-Cloud can cover devices 

spread approximately in a radius of 3 kilometers provided the area is reasonably flat without 

many obstacles. The direction of TT-Cloud should be toward watching other Tree-Talker; 

however, an external antenna will facilitate the signal coverage. 

 

Figure 6 - The TT-cloud gateway 

2.2.1 Mapping TreeTalker network to SensorThing entities 

The Tree-Talker scenario maps its objects into the STA sensing entities quite easily, but there 

are some peculiarities that must be highlighted and that will be illustrated in the next 

paragraphs. 

Note that we will try to remain inside the standard specifications of STA because this is the key 

of the harmonization and it ensures the maximum level of interoperability.  

We will also take advantage of the new features of the standard  introduced with version 1.1: 

all entities (except for HistoricalLocation) now have a field of the type JSON Object that can be 

used to store additional information about the object. In version 1.0 such a field already existed 

for the Thing entity (named properties), and for the Observation entity (named parameters).  

These fields can be used in filters and are completely customizable since the JSON dictionary 

implements a key-value pair paradigm.  
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  Numerosity 

STA Entity TreeTalker Entity # TT+ # TT-R # TT-CL # Total 

Thing TreeTalker device  40 1 2 43 

Location TreeTalker’s location 40 1 2 43 

Sensor 
Growth sensor, gravity sensor, 
spectrometer, etc 

7*40 = 280 3*1 = 3 4*2 = 8 291 

ObservedProperties 
Battery ADC, Stem Radial 
Growth, Air Temperature, etc 

22 22 

Multi/DataStream 
Time series identified by:  
OP, T and Sensor. 

17*40= 680 6*1 = 6 6*2 = 12 698 

FeatureOfInterest Tree  40 1 2 43 

Observation Time and value of observation 1 per hour per Multi/Datastream  
698 * hour 

of 
observation 

Table 2 - Mapping of entities and numerosity of instances 

2.2.2 Things 

The TreeTalker+ (TT+) device fits into the concept of Thing, that STA data model describes as a 

sensor platform or a station that is capable of being identified and integrated into 

communication networks. A TT+ is able to transmit observations to a server and contains 

several Sensors, that is, devices that respond to a physical stimulus producing a measure of its 

intensity or other quantitative parameter.  

So, in our mapping there will be a Thing for each of the TT+ boxes installed and one for the 

unique TT-R (a similar device that hosts only environmental sensors). Finally, since the TT-cloud 

concentrator is also capable of doing measures that are sent along with the others observations 

(the strength of the transmission links with the connected TT+s and of the downlink with the 

GSM Base Transceiver Station and some other operational parameters), even this device is 

modelled as a Thing. 

2.2.3 Sensors 

In our mapping, a Sensor is the single device contained in one of the TT* boxes that observes a 

certain biological or physical parameter. We may have simple and complex sensors (meaning 

with “simple” a sensor that observe a single parameter) and, according STA model, also 
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processes that executes software algorithms on raw measures to calculate derived values can 

be considered as sensors or part of them.  

In our case, inside a TT+ deployed in-situ, we have mostly physical electronic devices with or 

without embedded computing components that produce the values of only the parameters 

they measure directly (like a frequency instead of a humidity value) that is the values of an 

electrical parameter (digital or analogic) without finally transforming it into the measure of the 

correlated physical/biological phenomenon.  

The procedures needed to obtain the physical/biological parameter of interest must then be 

executed on these raw observations by specific processes that run on the server. Some of them 

will be embedded in the ingestion processes, since the functions they implement take as input 

only the instantaneous raw values coming from the sensors; others apply an aggregation of 

values over time and thus it would be much more complicated calculate this function along the 

ingestion data flow and so will be implemented as batch scheduled processes once the raw 

data have been stored in the DB. This is the case of “SAP flow” parameter, but we’ll analyze it 

in detail later. 

For the sake of simplicity, even though the processing of the raw signals is temporally and 

spatially separated from the in-situ devices, we will consider these processing components fully 

part of the related sensors. The O&M specifications (Observations & Measurements) to which 

the STA standard refers for the data model, have foreseen the required time attributes to 

differentiate between the moment an observation is made and when it has become available, 

and we’ll use these attributes to properly characterize raw and calculated observation. 

Name Description Metadata TT+ TT-R TT-CL 

SapFlowSensor 
Modular probes for 
sap flow 

Reference and heated temperature 
probes (±0.1 °C).  
Thermistors manufacturer: Murata 
Electronics.  
Model: NCU18XH103F6SRB. 

X     

StemHumiditySensor Stem humidity 
Capacitive sensor MicroPCB (20x3x2) 
mm with copper plates. 

X     

GrowthSensor 
IR radial growth 
sensor 

Infra-red distance sensor (±100 μm)  
Manufacturer: SHARP.  
Model: GP2Y0A51SK0F. 

X     

Battery 
Long life batteries or 
solar panel 

Battery: 4 Li-Ion batteries + solar 
panel (3.7 V) 

X X X 

GravitySensor 
Accelerometer for tilt 
angle determination 

Accelerometer (± 0.01°)  
Manufacturer: NXP/Freescale. Model: 
Si7006 

X     
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Spectrometer 
Twelve bands 
spectrometer 

Radiometer-12 spectral bands (450, 
500, 550, 570, 600, 610, 650, 680, 
730, 760, 810, 860 nm) (± 10 nm or 
±20 nm).  
Manufacturer: AMS.  
Model: AS7262 (Visible range), 
AS7263 (Near Infra-Red range) 

X X   

WeatherSensor 
Air temperature and 
humidity sensor 

Thermohygrometer (±0.1 °C ; ±2 % ).  
Manufacturer: Silicon Labs.  
Model: MMA8451Q 

X X   

ModemRouterLoRa 
Modem/router LoRa 
protocol 

868 MHz with external antenna     X 

ModemGPRS Modem GPRS       X 

FlashMemory 
Flash memory for 
data storage 

16 Mbyte     X 

Table 3 - Identified Sensors with correspondent type of Thing in which you can find them  

2.2.4 ObservedProperties 

An ObservedProperty is an aspect of physical phenomenon that a Sensor can observe and 

measure. At first, one could imagine that in our scenario the only ObservedProperties we deal 

with are those of strict interest for the analysis domain, that is the tree vital, biological and 

structural parameter (sap flux, xylem moisture, trunk radial growth …), but we must take into 

account even the sensor platform’s indicators like battery voltage or the radio transmission 

power to implement some quality checks on data and to monitor the operations and eventually 

schedule some maintenance interventions. Furthermore, at this stage of the project1, is 

important to store the raw and instrumental observations because, if some issues should 

emerge from the data analysis regarding the adopted algorithms, we could always reapply to 

the raw data the adjusted transformations. 

Thus, we could identify three types of the ObservedProperties:  

• raw properties, numbers from digital electronics or analogue electrical values that do 

not measure directly a domain physical/biological phenomenon, neither an operational 

physical phenomenon2. 

 

1 When the analysis of the results will confirm the various algorithms used to produce calculated observations, we 
could get rid off the raw or instrumental observations and do not collect them any more for further campaign of 
observation. 
2 The result of the IR sensor that send an impulse toward the surface of the trunk. 
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• instrumental properties, a physical, but meaningless parameters3 in terms of domain of 

analysis; ,  

• biological properties, the aspect of the real biological phenomenon4 we are interested 

in. To keep it simple, we will consider in this category even meteorological parameter 

like air temperature and humidity. 

We will use the properties attribute to tag ObservedProperties with their category. 

{ 

  "@iot.id": "FreqUnheatedSensor", 

  "name": "FreqUnheatedSensor", 

  "description": "Frequency measurement on the unheated sensor", 

  "definition": "https://www.unitus.it/iot/terms/observedproperties/ FreqUnheatedSensor ", 

  "parameters": { 

"category": "raw" 

  } 

} 

Snippet 1 -Sample instance of a raw ObservedProperty 

{ 

  "@iot.id": "TrunkSurfaceDistance", 

  "name": "TrunkSurfaceDistance", 

  "description": "Distance of the trunk surface from a point kept at a fixed distance from 

the xylem", 

  "definition": "https://www.unitus.it/iot/terms/observedproperties/TrunkSurfaceDistance", 

  "parameters": { 

"category": "instrumental" 

  } 

} 

Snippet 2 -Sample instance of an instrumental ObservedProperty 

{ 

  "@iot.id": "StemRadialGrowth", 

  "name": "StemRadialGrowth", 

  "description": "Growth of the trunk measured on a radius", 

  "definition": "https://www.unitus.it/iot/terms/observedproperties/StemRadialGrowth", 

  "parameters": { 

"category": "biological" 

 

3 For instance,  the “sap flow” is derived from the temperatures of a heated sensor and of an unheated one, 
measured at the start and at the end of a specific interval of time: these temperatures are yet physical parameters, 
measured in degree Celsius, but meaningless if considered by themselves. 
4 The Radial Growth of Trunk or the Sap Flow are some of these properties. 
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  } 

} 

Snippet 3 -Sample instance of a biological ObservedProperty 

Biological ObservedProperties often must be calculated by some function applied by a 

computing component that can be fully integrated with the device or not.  

In this latter case, that of a distinct elaboration phase, we must have available the raw or the 

instrumental properties. When the calculated properties are the result of a simple and 

invertible function you could avoid storing the input values because, if you need them, you can 

easily obtain them back by reversing the calculation. This is the case of the battery voltage or 

the air temperature. Notwithstanding this consideration, we will store all types of raw 

observations except those to which only a change of unit of measure is applied. 

Important: some parameter will not be mapped as ObservedProperty, since they are not per se 

interesting, but they will be attached to an observation for which they describe an 

environmental condition or bring additional information. In these cases, when creating the 

instance of the related Observation, we will attach the value of these parameter as a 

“parameters” attribute, that is key/value pair of a JSON object assigned as value of this attribute 

of the Observation.  

The standard deviation of each acceleration falls into this kind of parameter and so does the 

battery voltage for Stem Radial Growth or the probe temperature for the frequency 

measurement.   

{ 

  "phenomenonTime": "2020-05-12T13:00:00.000Z", 

  "resultTime": "2020-05-13T12:00:00.000Z", 

  "result": 32.0, 

  "parameters": { 

"voltage": 9.87 

  } 

} 

Snippet 4 - Sample observation with parameters attribute 

In Table 4 there is the list of ObservedProperties that we have identified in the system; for these 

properties there will be incoming streams of Observations from the various Things that will be 

stored in the STA repository. 

In this table the unit of Measure (UoM) is associated to the property: STA model attaches UoM 

to DataStream and the same ObservedProperty could be associated to different DataStreams 
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with different UoM (i.e. you could store the very same observation of Air Temperature as two 

Observations, one measured in °F and one in °C). Since this is not our intention, for the sake of 

understanding we show here the information of UoM, but we will strictly follow the STA data 

model. 
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Name Description Category TT+ TT-R 
TT-

cloud 
Calc’d UoM Dependencies 

IRSensorDistance 
Reading from the infra-red pulsed distance 
sensor positioned at few centimetres away 
from the tree trunk’s surface 

Raw X    d.n.  

TrunkSurfaceDistance 
Trunk surface distance derived from raw 
reading of infra-red pulsed distance sensor 

Instrumental X     X cm 
IRSensorDistance 
BatteryADC (parameter) 

StemRadialGrowth Growth derived from trunk surface distance  Biological X     X cm TrunkSurfaceDistance 

TempUnheatedSensor 
Temperature on sensor not heated 
(reference probe) at the beginning of 
measurement  

instrumental X      °C 10-1  

TempHeatedSensor 
Temperature on heated sensor at the 
beginning of the measurement  

instrumental X      °C 10-1  

TempUnheatedSensorEnd 
Temperature on sensor not heated at the 
end of measurement  

instrumental X      °C 10-1  

TempHeatedSensorEnd 
Temperature on sensor heated at the end of 
measurement  

instrumental X      °C 10-1  

SapFlow 
Sap flow according to the thermal 
dissipation method (TDP) of Granier 

Biological X     X g m-2 s-1 
TempUnheatedSensorEnd 
TempHeatedSensorEnd 

FreqUnheatedSensor 
Frequency measurement on the unheated 
sensor 

Raw X      Hz   

XylemMoistureContent Estimated amount of stem humidity Biological X     X % 
TempUnheatedSensor (parameter) 
FreqUnheatedSensor 

AirRelativeHumidity Air relative humidity Biological X X    %   

AirTemperature Air temperature Biological X X   X °C 10-1 Change of UoM (°C 10-1 
→ °C ) 

TreeAcceleration 
Acceleration and variance along the (Z,Y,X) 
dimensions 

Raw X      d.n. Variance  (parameter) 
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TiltAngle 
The angle between the gravity vector and 
the z-axis  

Biological X     X degree TreeAcceleration 

TransmissionSpectrum 
Canopy light transmission in 12 bands: 610, 
680, 730, 760, 810, 860, 450, 500, 550, 570, 
600, 650 (unit unknown) 

Instrumental X    X [unknown] Linear mapping from raw reading 

IncidentSpectrum 
Canopy incident light in 12 bands: 610, 680, 
730, 760, 810, 860, 450, 500, 550, 570, 600, 
650 (unit unknown) 

Biological  X   X [unknown] Linear mapping from raw reading 

BatteryADC Battery analog to digital converter  Raw X X   d.n.  

BatteryLevel Battery level Instrumental X X X  mV BatteryADC (only for TT+, TT-R) 

AccumulatedRecords Accumulated records in memory Instrumental     X  pure number   

NumberOfRecordsToSend 
Number of records that still needs to be 
send to the server 

Instrumental     X  pure number 
  

GSMFieldLevel GSM field level Instrumental     X  [unknown]   

RSSIRadioSignalStrenght 
RSSI received radio signal indication 
strength between TT+ & TT-CL (21) 

Instrumental     X  dBm 
  

Table 4 – ObservedProperties. Rows are grouped by sensor.  
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2.2.5 DataStreams 

A DataStream represents a time series of observations registered by a specific Sensor, made 

available by a specific Thing and regarding a specific ObservedProperty. 

2.2.6 Locations 

A Location in STA data model is the geographical position of a Thing. This for most of the in-situ 

sensor scenario, and thus also for our case. A point geometry type is the most appropriate type 

of location. 

2.2.7 FeatureOfInterest 

This entity represents the real-world object that is the target of the Observations. Not always is 

possible to identify such an object: if you’re remote sensing an area from an aircraft or a 

satellite, the feature of interest is rather a geographical area than a physical object, or if you 

have an anemometer even this spatial meaning could have fading borders. 

In our case, the individual tree to which the sensor is attached is indeed the FeatureOfInterest. 

and to this object we can attach information like the tree species, its height, the estimated age… 

TT-R and TT-cloud stations are as well attached to trees, but only  serving as a physical support 

because the sensors are not measuring their biological/physical parameter, but weather or 

transmission related parameters. So, the FeatureOfInterest for the TT-cloud could be the 

polygonal area that contains the TT+s linked to it, calculated as the convex hull of their locations, 

as shown in Figure 7. 

 

Figure 7 - Convex hull of locations of a TT+ cluster 
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For a TT-R station, since it measures weather conditions that can be considered similar up to a 

certain distance, we could think of a minimum circle that includes all the deployed stations with 

centre in the TT-R location. 

2.2.8 Identifier 

Defining nomenclature rules for the data model instances is quite important because the 

process of initial creation of the database and the following ingestion of observations depend 

on these rules. 

Our choice has taken into account even the way data are made available by the TT* devices and 

the constraints of the STA data and service models. 

To recap, our boundary conditions were:  

• each data row coming from the fields stations contains the serial number (SN) of the 

TT+ that produced it. 

• there’s not a preliminary identification by means of a registry number of the trees 

subject to the monitoring; only their position is acquired via GPS and registered. These 

coordinates are not recorded on the device but are kept externally.   

• When inserting observations, STA data and service models force you to indicate the 

Datastream they belong to together with the related FeatureOfInterest. 

The identifiers could be: 

• managed by server 

• managed by client 

• hybrid mode: both server and client can define identifier. 

The last configuration is the one that best fit our needs: in fact, we can use the client-defined 

identifiers for those entities that are stable or that change very rarely and that are inserted into 

the database during its start-up phase, that is: 

• Location 

• Sensor 

• Thing 

• Datastream 

• ObservedProperty 

• FeatureOfInterest 

Any instance of these entities needs to be identified properly by a user because almost every 

use case are query like “which ObservedProperty is collected by Sensor X?” or “which Sensors 

are contained in Thing Y?” or “give me the Observation gathered by Sensor X regarding 
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ObservedProperty Z” thus their identifiers should better be “meaningful identifier” that a 

human can guess knowing some characteristics of the object he/she’s looking for.  

Observations instead are automatically produced by sensors and rarely need to be identified 

individually by the user, so we’ll let the system assign an identifier. 

Said this, the SN of the TT+ device becomes fundamental for the construction of the identifiers 

of the following entities: 

Entity Pattern example 

Location Loc_<SN> Loc_21990671 

Sensor <TypeOfSensor>_<SN> ModularProbes_21990659 

 

Thing TT_<SN> TT_21990699 

DataStream DS_<ObservedProperty>_<SN> DS_TiltAngle_21990668 

Table 5 - Rule for naming static entities that depend on Things 

The remaining “static” entities are independent from the TT+ devices, that is an 

ObservedProperty observed by a Sensor belonging to a TT+ Thing, but it can be observed also 

by a totally different Sensor belonging to another Things located at the opposite side of the 

world. The FeatureOfInterest is independent as well the tree has been there before the Thing 

was installed and will continue to exist after the Thing will be removed. For this kind of entities, 

the naming rule are quite different: 

Entity Pattern/rule example 

ObservedProperty 
meaningful name of the property, 

CamelCase formatted 
TreeAcceleration 

FeaturesOfInterest <area>_<tree species>_<sequence> paneveggio_fir_0001 

Table 6 - Rule for naming static entities  indepedent from Things 

Finally, for the Observations, we’ll let the server create the. That’s the type of identifier that 

will be used for Observations. 

Entity Pattern/rule example 

Observation UUID 77957484-9162-11eb-8243-9f2433bacadb 

Table 7 - Rule for dynamic entities Observations 
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IMPORTANT: during the ingestion phase, the process that implements the automation will 

detect the SN inside the Observations data coming from a cluster of TT+ devices. With this SN, 

the process will identify the correct DataStreams to which append the various Observations, 

but it needs to know the correct FeatureOfInterest too. There’s no manner to infer this 

information from the Observations flow and, therefore, one should store the Thing-FoI pairing 

is some external data structure that will be looked-up by the process. If a TT+ is substituted 

completely (it’s something that may happen), a new Thing, new Sensors and new Location shall 

be created (and a new DataStream, too), but the ObservedProperties and  FoI shall remain the 

same: thus the pairing information shall be updated as well. 

2.2.9 Versioning of sensor devices 

It’s possible that during its period of duty, a TT+ device is subject to a maintenance intervention 

aiming to an upgrade of a contained Sensor in terms of hardware or firmware. Both type of 

upgrade can be backward-compatible, but also could break this compatibility, meaning that 

observations streaming from the sensor after the intervention could not be comparable 

anymore with those collected before.  

In both cases we must trace this upgrade event and be able to obtain information of the sensor 

version that collected an observation. On the other side, when the upgrade maintains backward 

compatibility, it should be easy to treat the relative observation time series as one. 

Another requirement is that the usual procedure adopted till now is to version the whole TT+ 

box, i.e.: a firmware update that improve or resolve some issue only for the accelerometer, 

results in a new version of the TT+. In order to keep track of these changes over time, a 

Datastream called “version” will be created and its ObservedProperty will be the TT+ version. 

The observation will also contain the upgrade date. Searching among these observations the 

user can get the validity period of a particular version or the version that was active at a certain 

time.  

To recap: 

• If a backward-compatible upgrade is made to one or more Sensors or part of them, a 

new observation will be added to version Datastream with the new version installed, 

the date of installation and the information about the new version. 

• If non-backward-compatible upgrade is made, together with the above updates, a new 

Sensor must be created along with a new DataStream added to the Thing and the old 

Sensor must be ceased.  
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2.3 Forest fire predictions and controls 

The aim of this DApOS is to produce maps of fire risk and of variables relevant to fire prevention 

and control, in selected forested natural parks of the Puglia regions, based on climate, remote 

sensing, and proximal sensing data properly integrated thanks to machine learning and Big Data 

analysis tools. Specifically, a regional network of TreeTalker and TreeTalkerFire in-situ stations 

allow the characterization and continuous monitoring at tree level of selected parameters that 

are acknowledged to be important in triggering and fostering forest fires. In total 240 sensors 

are distributed in 4 regional parks area (120 are TreeTalker devices and 120 TreeTalkerFire 

devices). The TreeTalkerFire variables are: 

• Air temperature, 

• Relative humidity, 

• Foliage Temperature, 

• CO2 concentration, 

• O3 concentration, 

• PM2.5 and PM10 concentration, 

• Presence of Flame. 

All the previous considerations made for TreeTalkers regarding management of data are also 

valid for TreeTalkerFires. The main differences between the two systems are the sensors 

mounted on the devices and the way the data will be used. Fire prevention needs an almost 

real time monitoring and the data should be treated accordingly, this consideration explains the 

presence of a variable called “Presence of Flame” that is a flag triggered in case of fire. However, 

the use of the data does not regard their storage but their analysis.  
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2.4 IoT for animal wellbeing 

Animaltalker device is currently under development but the managing of the data can be 

described knowing its characteristics. 

An Animaltalker is a device that can receive data via Bluetooth from different sensors called 

animal buttons. Each button is composed of a sensor, a battery and a Bluetooth microchip with 

its antenna. It sends the data collected in a string format using a BLE (Bluetooth Low Energy) 

service. The Animaltaker gathers all the strings with their IDs and makes them available over 

the internet. The buttons under development now are: 

• A skin temperature button; 

• A movement button (using a 3 axis accelerometer); 

• An under skin temperature button; 

• A heart rate button. 

The AnimalTalker has a GPS module, an environmental temperature and humidity sensor, a NB-

IoT/4G/5G module to allow internet connection and the possibility to mount a LoRa module to 

work also in places where obtain a good internet connection is particularly challenging. 

2.4.1 Mapping AnimalTalker network to SensorThing entities 

Most of the comments made for TreeTalkers are valid for the AnimalTalker network. There is 

also the will to use the same data structure for all the networks of the project. A major 

difference between the two systems is that the animal position will change over time so the 

“HistoricalLocation” entity will be used to keep track of the subsequent animal GPS coordinates.  

 

 

 

STA Entity AnimalTalker Entity 

Thing AnimalTalker device 

Location Animal last GPS coordinates 

HistoricalLocation 
Previous animal GPS 

coordinates 

Sensor 
Buttons and AnimalTalker 

sensors 
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ObservedProperties 
Movements, skin temperature, 

under skin temperature, … 

Multi/DataStream 
Used if a particular button will 

send related multiple data 

FeatureOfInterest Animal 

Observation Time and value of observation 

Table 8 – AnimalTalker mapping of entities 

2.4.1.1 Things 

The AnimalTalker will be considered a Thing while the buttons will be Bluetooth Sensors. If the 

device will work using LoRa protocol, the LoRa gateway will also be considered a Thing. 

2.4.1.2 Sensors 

As stated above, in our mapping a Sensor will be the single Bluetooth button but also the 

AnimalTalker itself will host some sensors such as the environmental humidity and temperature 

sensor and even the LoRa gateway will send some useful data. The buttons will have a microchip 

more powerful than the TreeTalker one. Therefore, some sensors will present on their software 

suitable algorithms to perform on chip the analysis of measurements. Further analysis could be 

performed server side such as the ones that require an aggregation of values over time and for 

this reason must be analysed using batch scheduled processes. All the data derived from the 

same physical electronic device will be considered part of the related sensor. 

 

Name Description Button AnimalTalker 
LoRa 

gateway 

SkinTemperatureSensor 
Temperature sensor 

placed on animal skin 
X   

UnderSkinTemperatureSensor 

Temperature 
measured by an 
under skin RFID 

sensor 

X   

MovementSensor 

High frequency 
accelerometer to 

detect specific 
animal movements 

X   
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HeartRateSensor 
Optical heart rate 

sensor 
X   

WeatherSensor 
Air temperature and 

humidity sensor 
 X  

Battery Battery level X X X 

ModemRouterLoRa 
LoRa protocol 

Modem/router 
  X 

ModemGPRS 
NB-IoT/4G/5G 

module 
 X X 

Table 9 - Identified AnimalTalker sensors with correspondent type of Thing in which you can find them  

2.4.1.3 ObservedProperties 

The measured physical phenomena are related to sensors described in the previous paragraph. 

We will always save, if possible, the raw data because they represent the true measured value, 

thus the reference one. However, taking into account some sensors such as the 20 Hz 

accelerometer, the raw data should be sent only during the first stage of the project to allow 

the analysis of the phenomenon measured. In every day conditions, the amount of data 

collected would be too much to be made available over the internet (the value of this kind of 

data changes quickly). For this reason, data should be saved locally and an algorithm should be 

uploaded on the button to send only the final output. The algorithm could also monitor the 

changes in the measure of interest and start the data collection when a particular condition is 

reached. Some performed measurements can be more interesting when related with other 

parameters. In these cases, the main information will present the value of the secondary one 

as a “parameter” attribute, which is a metadata of an ObservedProperty.  

In conclusion, also for AnimalTalker we will use three types of the ObservedProperties:  

• raw properties, numbers from digital electronics or analog electrical values that do not 

measure directly a domain physical/biological phenomenon, neither an operational 

physical phenomenon. 
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• instrumental properties, a physical, but meaningless parameters in terms of domain of 

analysis; ,  

• biological properties, the aspect of the real biological phenomenon we are interested 

in. To keep it simple, we will consider in this category even meteorological parameter 

like air temperature and humidity. 

In Table 10 there is the list of ObservedProperties that we have identified in the system; for 

these properties there will be incoming streams of Observations from the various Things that 

will be stored in the STA repository. 

Now, we do not fully know all the analysis that will be performed over data collected and if they 

will be implemented server side or button side. Thus, we listed on Table 10 some examples of 

the data that will be saved on the database but they should not be considered conclusive.
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Name Description Category Button AnimalTalker 
LoRa 

gateway 
UoM 

SkinTemperatureAnalog 
Output of insulated surface 

temperature sensor placed on a 
meaningful position. 

Raw X   d.n. 

SkinTemperature 
Temperature of animal skin derived 

from the surface temperature 
sensor. 

Instrumental X   °C 

BodyTemperature 
Animal Core temperature obtained 

using skin temperature and air 
temperature and humidity. 

Biological X   °C 

UnderSkinTemperature 
Temperature measured by an 

under skin RFID sensor. 
Biological X   °C 

MovementAnalysis 

Movement readings performed by 
a high frequency accelerometer to 

detect particular movement 
patterns of the animal. 

Instrumental X    

HeartRateOptical 
Measures obtained by an optical 

heart rate sensor that can be 
related to the animal heart rate. 

Raw X   d.n. 

HeartRate Animal heart rate  Biological X   bpm 

AirRelativeHumidity Air relative humidity Biological  X  % 

AirTemperature Air temperature Biological  X  °C 

BatteryLevel Battery level Raw X X X  

SupplyVoltage Battery supply voltage Instrumental X X X mV 

GSMFieldLevel GSM field level Instrumental  X X  

RSSIRadioSignalStrenght 
RSSI received radio signal indication 
strength between TT+ & TT-CL (21) 

Instrumental   X dBm 

Table 10 – AnimalTalker ObservedProperties. Rows are grouped by sensor.  
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2.4.1.4 DataStreams 

A DataStream represents a time series of observations registered by a specific Sensor, made 

available by a specific Thing and regarding a specific ObservedProperty. 

2.4.1.5 Locations and HistoricalLocations 

Positioning is particularly important in this project because animals move during the day. For 

this reason, the device has a GPS module that can provide geographic coordinates that will be 

saved in Locations. Every time the field will be updated, the old position will be stored in 

HistoricalLocations. 

2.4.1.6 FeatureOfInterest 

This entity represents the real-world object that is the target of the Observations. The 

AnimalTalker FeatureOfInterest will be the animal itself. This field is particularly useful to 

identify the animal and to storage its characteristic like breed, feeding, age, etc.  

2.4.2 Identifier 

Identifiers are IDs used by the database to identify univocally an entity. The IDs can be chosen 

by the database in an automatic way or by the user. We choose to use the latter because the 

IDs are used to create, update and delete an entity so select them following a method that is 

easy to understand and that can be automated is of primary importance. AnimalTalker identifier 

and the name of the entity will compose the database entities identifiers. The reason behind 

this choice is that each string sent by every device to the server will start with the device id and 

the users will know the ids of their device so using the protocol previously described will make 

the system managing easy. Only the ObservedProperties will be identified using an id chosen 

by database itself because the measurements values should not be modified. 

2.4.3 Versioning of sensor devices 

A change in AnimalTalker version will be treated in the same way of a change in TreeTalker 

version. 
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3 Harmonization of climate reanalysis and projections 

The climate research community recognizes since years file formats, standards and 

conventions favoring further harmonization and enabling interoperability, among 

climate-related products but also with other types of data. Climate data are assumed 

already harmonized as any variable is provided under the same format. In this 

paragraph, the formats, standards, and conventions used in HIGHLANDER for climate 

model generated data are described. 

3.1 File format 

One of the first aspect to consider in climate modelling outputs is the data format. 

Climate research consider 3 generic categories: GRIB, NetCDF and HDF. All of these 

formats are portable (machine independent) and self-describing, i.e. they can be 

examined and read by the appropriate software without the user is expected to know 

the file's structural details. Further, additional information about the data, called 

"metadata", may be included in the file, e.g. textual information about each variable's 

contents and units, or numerical information describing the grid type, the coordinates 

(e.g., time, level, latitude, longitude). The most recent and used data formats are as 

follows: 

netCDF4: Network Common Data Format (Version 4.x) 

GRIB2: GRIdded Binary (Edition 2) 

HDF5: Hierarchical Data Format (Version 5.x) 

NetCDF (Network Common Data Form) is designed to facilitate access to array-oriented 

scientific data and is the format most commonly used for climate model generated data. 

NetCDF contains a header which describes the layout of the rest of the file, in particular 

the data arrays, as well as arbitrary file metadata in the form of name/value attributes. 

As said, the additional information about a file or variable is commonly called 

"metadata". 

There are two versions of netCDF-{3,4}. The netCDF-3 data model was used for many 

years and is often referred to as netCDF-classic. However, as datasets became larger, 

the grids more complicated, and user desires for more flexibility developed (e.g. support 

compression, string variables or parallel processing) the netCDF-4 (nc4) was created.  

There are three different software categories used for climate data processing and 

visualization: (1) compiled languages (eg., fortran, C, C++); (2) command line 

operators and viewers (NCO, CDO, ncview, panoply); (3) interpreted languages (NCL, 

GrADS, Ferret, R, Generic Mapping Tools (GMT), Perl Data Language (PDL) , Python 

[CDAT/PyNIO/PyNGL/Numpy/matplotlib], and the commercial products Matlab, IDL 

and, to a lesser extent, PV-Wave). 

http://www.unidata.ucar.edu/software/netcdf/#netcdf_faq
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/
https://support.hdfgroup.org/HDF5/whatishdf5.html
http://www.unidata.ucar.edu/software/netcdf/software.html
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The typical NetCDF file has several components: (a) dimension names; (b) dimension 

sizes of the dimension names; (c) the variables on the file which often include additional 

information about each variable and temporal/spatial coordinates; and (d) global 

attributes which contain information about the file's contents, authors, post-processing 

history etc. 

To enable spatio-temporal referencing, the NetCDF file contains coordinate variables 

which are defined as one-dimensional variables with the same name as a dimension. 

Coordinate variables should not have any missing data (for example, no _FillValue or 

missing_value attributes) and must be strictly monotonic (values increasing or 

decreasing). 

The following is an example of a typical NetCDF file created in HIGHLANDER from Task 

4.1 (Downscaling of ERA5 reanalysis, VHR-REA_IT, see Deliverable 4.1), referring to 

hourly 2-meter air temperature for 1989 (i.e. 8760 time steps, 24 hours by 365 days). 

In the example, time(time), rlat(rlat), and rlon(rlon) are classified as coordinate 

variables while T_2M(time,rlat,rlon) is classified as variable. In this case coordinates 

are in rotated pole grid, represented by rlat and rlon (see explanation in the next 

paragraph). 
 

netcdf file:/C:../T_2M_HLDRea_002_1hr_1989.nc 

{  

  dimensions: 

    time = UNLIMITED;   // (8760 currently) 

    bnds = 2; 

    rlon = 535; 

    rlat = 680; 

  variables: 

    double time(time=8760); 

      :standard_name = "time"; 

      :long_name = "time"; 

      :bounds = "time_bnds"; 

      :units = "seconds since 1988-01-01 00:00:00"; 

      :calendar = "proleptic_gregorian"; 

      :axis = "T"; 

 

    double time_bnds(time=8760, bnds=2); 

 

    float lon(rlat=680, rlon=535); 

      :standard_name = "longitude"; 

      :long_name = "longitude"; 

      :units = "degrees_east"; 

      :_CoordinateAxisType = "Lon"; 

 

    float lat(rlat=680, rlon=535); 

      :standard_name = "latitude"; 

      :long_name = "latitude"; 

      :units = "degrees_north"; 

      :_CoordinateAxisType = "Lat"; 

 

    double rlon(rlon=535); 

      :standard_name = "grid_longitude"; 

      :long_name = "rotated longitude"; 

      :units = "degrees"; 

      :axis = "X"; 

 

    double rlat(rlat=680); 

      :standard_name = "grid_latitude"; 

      :long_name = "rotated latitude"; 
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      :units = "degrees"; 

      :axis = "Y"; 

 

    int rotated_pole; 

      :long_name = "coordinates of the rotated North Pole"; 

      :grid_mapping_name = "rotated_latitude_longitude"; 

      :grid_north_pole_latitude = 47.0f; // float 

      :grid_north_pole_longitude = -168.0f; // float 

 

    float height_2m; 

      :standard_name = "height"; 

      :long_name = "height above the surface"; 

      :units = "m"; 

      :positive = "up"; 

      :axis = "Z"; 

 

    float T_2M(time=8760, rlat=680, rlon=535); 

      :standard_name = "air_temperature"; 

      :long_name = "2m temperature"; 

      :units = "K"; 

      :grid_mapping = "rotated_pole"; 

      :coordinates = "height_2m lat lon"; 

 

  // global attributes: 

  :CDI = "Climate Data Interface version 1.9.8 (https://mpimet.mpg.de/cdi)"; 

  :Conventions = "CF-1.4"; 

  :history = "Mon Mar 22 18:04:48 2021: cdo selyear,1989 ../pronti/T_2M_HLDRea_002_1hr_1989.nc 

T_2M_HLDRea_002_1hr_1989.nc\npost-processing"; 

  :source = "COSMO"; 

  :institution = "Fondazione CMCC (Euro-Mediterranean Center on Climate Change) - REMHI Division - 

Caserta - Italy)"; 

  :title = "VHR-REA CCLM downscaling ERA5 (0.02 Deg)"; 

  :project_id = "HIGHLANDER"; 

  :experiment_id = "Evaluation with Urban Parametrization, DT=20sec"; 

  :conventionsURL = "http://www.cfconventions.org/"; 

  :contact = "Mario Raffa (mario.raffa@cmcc.it)"; 

  :references = "http//www.clm-community.eu, http://www.cmcc.it"; 

  :creation_date = "2021-03"; 

  :CDO = "Climate Data Operators version 1.9.8 (https://mpimet.mpg.de/cdo)"; 

} 

3.2 Convention and Standards 

In some cases, the file's contents are written using a standard netCDF convention which 

ensures users and automatic software that certain 'rules' have been followed when 

creating the file. The two most commonly used netCDF conventions for climate data are 

the COARDS and CF. The latter was created in 2003 to address the evolution of models 

and data sets and is a superset of the COARDS convention. 

CF is evolving and has different version, for example the Copernicus Climate Data Store 

accepts versions not before v1.4. A netCDF file can be checked for CF compliance by 

using this cf-checker. In HIGHLANDER, exceptions under CF are however considered 

acceptable if compliant with the UNIDATA Common Data Model (CDM) to codify the 

Coordinate Reference System. This is the case of the _CoordinateAxisType attribute of 

the Lat and Lon variables in the file automatically generated by HIGHLANDER climate 

model runs, which does not invalidate the correctness of the format. 

3.3 Tips and insights 

The variables included in the downscaled climate data refers to different “heights” 

according to their definition and typical meaning in physical world and/or scientific 

https://mpimet.mpg.de/cdo
http://cfconventions.org/
http://puma.nerc.ac.uk/cgi-bin/cf-checker.pl
https://www.unidata.ucar.edu/software/netcdf-java/v4.6/CDM/
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literature. Some variables (e.g. precipitation) are related to the surface, others to 2 or 

10 m above ground (like temperatures or wind, respectively), others to multiple subsoil 

depths (soil moisture). The NetCDF format allows to handle different spatio-temporal 

dimensions: latitude, longitude and vertical (over surface and sub-surface) levels. 

According to the Downstream Application and pre-Operational Service (DApOS) of 

interest, the model outputs will be further elaborated e.g. aggregating time series (from 

hourly to daily or monthly) and clipping the interested point(s) or area(s). Another 

useful transformation could be the regridding of the rlat-rlon rotated pole grid to a lat-

lon grid. In rotated pole grid (as the one of HIGHLANDER climate model outputs) latitude 

(lat) and longitude (lon) are two-dimensions variables and rlat-rlon (rotated pole 

coordinates) as one-dimension variables, acting as dimensions of lat and lon. Different 

algorithms can be selected to regrid, according to the variable of interest, and will be 

implemented in the post-processing workflow through WP6. 

  

https://earthsystemmodeling.org/regrid/#regridding-methods
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4 Satellite data harmonization 

Satellite data can sense the whole Earth surface repeatedly, allowing the mapping along time 

of multiple properties that characterize the specific sensed surfaces. The satellite missions are 

run by different space agencies, like the Unites States National Aeronautics and Space 

Administration (NASA); the European Space Agency (ESA); the Japanese Japan Aerospace 

Exploration Agency (JAXA), among others. Each space agency has different on-going missions, 

based on different sensing objectives, and targeting different Earth properties. Accordingly, 

different sensors are employed on satellites, and for each differ harmonization requirements 

apply. 

At the present stage, Highlander is considering the use of the ESA Copernicus Sentinel 2 and 

possibly Sentinel 1 missions’ datasets for its project purposes, and thus the focus of this chapter 

is on the requirements for these datasets. If other data sources will be employed in the futures, 

the requirements will be updated accordingly. 

 

4.1 Copernicus INSPIRE 

The INSPIRE directive aims at unifying and harmonizing cartographic information making 

geospatial information easily searchable, accessible, and interoperable. This is reached 

creating an EU spatial data infrastructure – a shared framework of standards, metadata, and 

tools. INSPIRE will enable the sharing of environmental geospatial information -such as 

satellite data and derived Earth properties- among public sector organizations, facilitating 

public access to spatial information across Europe. Having access to comparable information 

inside and across Member States is valuable for a range of applications, including carrying out 

environmental impact assessments, coordinating responses to natural or man-made crises, 

and even keeping our satellite navigation systems up-to-date. 

The INSPIRE Directive is being implemented in a phased manner, with full EU-wide 

implementation of all provisions targeted by the end of 2021. 

Copernicus, the Europe’s Earth Observation program, relies heavily on accurate, up-to-date 

and harmonized geospatial information for the production and validation of many of its 

information products and services. The timely implementation of the INSPIRE directive should 

increase the number of available datasets and services relevant to the Copernicus Services, 

and considerably facilitate data discovery and access operations.  

https://www.youtube.com/watch?v=K6tcUqMAPW8
https://inspire.ec.europa.eu/inspire-roadmap/61
http://copernicus.eu/
http://copernicus.eu/main/services
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The INSPIRE Directive requires that common Implementing Rules (IR) be adopted in several 

specific areas (Metadata, Data Specifications, Network Services, Data and Service Sharing and 

Monitoring and Reporting). A user must be able to find spatial data sets and services and to 

establish whether they may be used and for what purpose; thus, Member States should provide 

descriptions in the form of metadata, compatible and usable in a Community and trans-

boundary context. The INSPIRE Metadata regulation defines a set of metadata necessary to 

allow identification of the information resource for which metadata is created, its classification 

and identification of its geographic location and temporal reference, quality and validity, 

conformity with implementing rules on the interoperability of spatial data sets and services, 

constraints related to access and use, and organization responsible for the resource. Metadata 

elements related to the metadata record itself are also necessary to monitor that the metadata 

created are kept up to date, and for identifying the organization responsible for the creation 

and maintenance of the metadata.  

As part of the Global Monitoring for Environment and Security program, the Sentinel missions 

support and use INSPIRE Metadata regulation. An XML INSPIRE file, including the set of 

metadata characterizing the User Product, is included in the product itself. Full specification 

regarding INSPIRE metadata and standards are provided in the Sentinel-2 and Sentinel-1 

Products Specification Document.  

4.2 Harmonization among different missions/sensors 

For Highlander main project objectives, the ESA Sentinel 2 mission datasets will be employed. 

In addition, the potential use of ESA Sentinel 1 data will be also considered in a later stage, 

thanks to its weather independent capabilities. 

SENTINEL-2 is a European wide-swath, high-resolution, multi-spectral imaging mission. The full 

mission specification of the twin satellites flying in the same orbit but phased at 180°, is 

designed to give a high revisit frequency of 5 days at the Equator. 

SENTINEL-2 carries an optical instrument payload that samples 13 spectral bands: four bands 

at 10 m, six bands at 20 m and three bands at 60 m spatial resolution. The orbital swath width 

is 290 km. Each of the satellites in the SENTINEL-2 mission carries a single payload: the Multi-

Spectral Instrument (MSI). 

The Sentinel-1 mission comprises a constellation of two polar-orbiting satellites, operating day 

and night performing C-band synthetic aperture radar imaging, enabling them to acquire 

imagery regardless of the weather. Sentinel-1 will work in a pre-programmed operation mode 

to avoid conflicts and to produce a consistent long-term data archive built for applications 

based on long time series. The constellation will cover the entire world’s land masses on a bi-

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload


 

Page 41 

weekly basis. The Interferometric Wide Swath product will be considered for Highlander 

project, thanks to its double polarization (VV and VH), high spatial resolution (10m), and wide 

Earth coverage. 

The Sentinel 1 and 2 bring information from different spectral regions, from visible to 

microwave. While Sentinel 2 data offers a view on the reflectance properties of vegetation or 

target features, Sentinel 1 report volumetric and surface scattering mechanisms, together 

with information regarding water content of the target. 

Data integration can be beneficial for multiple analysis, and it is usually performed in machine 

learning -based models – foreseen in Highlander - using advanced algorithms able to exploit 

such different information content. 

4.3 Data harmonization and quality check 

With respect to quality check, Copernicus data are already provided with information on their 

quality for each scene, and no additional action is requested in this sense.  

Harmonization of time series is often requested to derive reliable information collected in 

multiple dates.  

For Sentinel 1, a multitemporal calibration is foreseen in preprocessing steps, together with the 

normalization with respect to local incidence angle (Gamma 0) for vegetation analysis. In 

addition, layover and shadow masks are produced during preprocessing, to exclude SAR 

distortion effects on slopes.  

For Sentinel 2, the use of vegetation indices derived from different bands allows to normalize 

the signal collected from different dates; the vegetation indices use is therefore to be preferred 

in modeling when using inputs from time series. In addition, haze and cloud removal, or the 

production of cloud-free multitemporal composites, are procedures that allow to exclude 

invalid data caused by weather artifacts. 

4.4 Harmonization with other non-satellite data sources 

When additional remote sensing data are available, they could be used for specific applications 

developed by Highlander. This is the case of airborne data, such as lidar or hyperspectral. To be 

able to safely join these non-satellite inputs, routines to ensure data comparability must be set 

up. These include the radiometric evaluation, to check that reflectance values are comparable; 

also, geolocation accuracy must be evaluated, and coregistration must be performed if needed. 


