

Co-financed by the Connecting Europe

Facility of the European Union

Co-financed by the Connecting Europe

Facility of the European Union

Co-financed by the Connecting Europe

Facility of the European Union

D4.4 Data Harmonization Specifications

Deliverable Lead DIBAF, Dedagroup

Deliverable due date 2021/03/31

Status DRAFT

Version V1.0

Page 2

DOCUMENT CONTROL PAGE

Title D4.4

Creator Dedagroup

Publisher Highlander Consortium

Contributors
Martina Forconi, Stefano Pezzi, Riccardo Valentini,

Francesco Renzi, Damiano Giannelle, Gaia Laurin,

Monia Santini

Type Report

Language EN

Rights Copyright “Highlander Consortium”

Audience Public

Requested deadline M18

Page 3

Index

1 Introduction .. 5

2 IoT data harmonization ... 6

2.1 OGC:STA – SensorThings API .. 7

2.1.1 Data model .. 8

2.1.2 REST ... 10

2.1.3 ODATA ... 12

2.1.4 MQTT ... 12

2.2 Natural parks IoT data .. 14

2.2.1 Mapping TreeTalker network to SensorThing entities ... 15

2.2.2 Things .. 16

2.2.3 Sensors .. 16

2.2.4 ObservedProperties .. 18

2.2.5 DataStreams .. 24

2.2.6 Locations ... 24

2.2.7 FeatureOfInterest ... 24

2.2.8 Identifier .. 25

2.2.9 Versioning of sensor devices ... 27

2.3 Forest fire predictions and controls ... 28

2.4 IoT for animal wellbeing ... 29

2.4.1 Mapping AnimalTalker network to SensorThing entities 29

2.4.1.1 Things .. 30

2.4.1.2 Sensors .. 30

2.4.1.3 ObservedProperties .. 31

2.4.1.4 DataStreams .. 34

Page 4

2.4.1.5 Locations and HistoricalLocations ... 34

2.4.1.6 FeatureOfInterest .. 34

2.4.2 Identifier .. 34

2.4.3 Versioning of sensor devices ... 34

3 Harmonization of climate reanalysis and projections .. 35

3.1 File format .. 35

3.2 Convention and Standards ... 37

3.3 Tips and insights ... 37

4 Satellite data harmonization ... 39

4.1 Copernicus INSPIRE .. 39

4.2 Harmonization among different missions/sensors .. 40

4.3 Data harmonization and quality check .. 41

4.4 Harmonization with other non-satellite data sources ... 41

Page 5

1 Introduction

This project deliverable provides a high-level description of the data we are dealing with in the

different Highlander DApOS from the point of view of the harmonization requirement.

Access, analyse and produce data homogenously saves time and money, avoids mistakes and

helps the comprehension of the results. Standard specifications are designed to achieve these

goals and Highlander project strongly leans on available international standards and, especially,

on those regarding spatial information, furthermore, following the principles and directives of

the European INSPIRE project.

In situ and remote sensing data are the two main types of data that are considered in the

document: we will take into account the physical data format, the protocols and the service

model used to access input data or publish results.

Using standards helps data harmonization, but it’s not enough: almost every standard

specification lives a certain degree of freedom especially at the semantic level, thus we’ll show

and explain some peculiar choices that fill these specification gaps.

Chapter 2 deals with IoT data coming covering three different scenarios (tree growth, animals

health, wildfires), but managed in similar way. Chapter 3 covers the weather data and chapter

4 remote sensing images gathered by the multispectral sensor of Sentinel 2 and the SAR data

of Sentinel 1 instrument.

Page 6

2 IoT data harmonization

Internet of Things (IoT) consists of smart devices that communicate with each other. It enables

these devices to collect and exchange data and offers excellent potential to collect time-series

data for improving situational awareness.

The term “Internet of Things” (IoT) was first used in 1999 by British technology pioneer Kevin

Ashton to describe a system in which objects in the physical world could be connected to the

Internet by sensors. Ashton coined the term to illustrate the power of connecting Radio-

Frequency Identification (RFID) tags used in corporate supply chains to the Internet in order to

count and track goods without the need for human intervention. Today, the Internet of Things

has become a popular term for describing scenarios in which Internet connectivity and

computing capability extend to a variety of objects, devices, sensors, and everyday items.

Monitoring a single sensor alone might not offer much benefit; however, the monitoring of

many sensors targeted at a linked causality brings valuable insights. If these sensors are

connected to a network, one speaks of the Internet of Things (IoT), which is rapidly growing due

to narrow production costs and huge potential in the field.

This offers the ability to measure, infer and understand environmental indicators, from delicate

ecologies and natural resources to urban environments. The proliferation of these devices in a

communicating–actuating network creates the Internet of Things (IoT), wherein sensors and

actuators blend seamlessly with the environment around us, and the information is shared

across platforms in order to develop a common operating picture.

IoT technology offers the possibility to transform agriculture, industry, and energy production

and distribution by increasing the availability of information along the value chain of production

using networked sensors. However, IoT raises many issues and challenges caused by a

splintered sensor manufacturer landscape, data comes in various structures, incompatible

protocols and unclear semantics. To tackle these challenges a well-defined interface, from

where uniform data can be queried, is necessary. The Open Geospatial Consortium (OGC) has

recognized this demand and developed the SensorThings API standard, an open, unified way

to interconnect devices throughout the IoT.

The SensorThings API is a standard for the collection, storage and retrieval of time-series data.

The standard defines a model for sensor data and its metadata, as well as an interface for both

data storage and retrieval. The service can be queried with powerful filters, including geospatial

search possibilities. The goal of the SensorThings API is to offer a unified way for the usage of

sensor-data and to facilitate the development of data-driven applications.

Page 7

2.1 OGC:STA – SensorThings API

Sensor data have much to do with geographic data since they most of them comes from stations

that have a specific location on the surface of Earth and/or refers to a specific area, point or,

generally speaking, to a spatial feature. In situ observation data falls into this category as well

as remote sensing data are very similar to satellite or aerial surveys images, even if the time

dimension plays a very important role and so does the multidimensionality of the observed

data.

There are also some kind of observations that are more difficult to assimilate to common

geographic data, like data registered by moving sensors (like sounding balloon or ships or other

vehicles on which sensors can be mounted) or remote sensing data that refers to volumes

instead of surfaces.

For this reason, OGC has tackled the topic of sensor data in the larger context of geographic

data, assembling a suite of standards called Sensor Web Enablement (SWE) and has tried to

harmonize common concepts and to use the same protocols and encodings used for the better-

known spatial services.

This suite has first hosted a conceptual model for observations and forecasts called O&M

(Observations and Measurements) that become a ISO abstract specification and then a XML

implementation that has been used to code the entities transferred by the Sensor Observation

Service (SOS). Together with O&M, another coding specification has been released to describe

sensors and, generally, computational processes used in a previous or in a following phase of

the measurement.

The formal definition of SOS was defined likewise WMS, WFS or the other OWS (OGC Web

Services), thus having a SOAP binding, an XML payload, a GetCapabilities operation for self-

description and several other different operations.

SensorThings API (STA) is the evolution of the OGC:SOS Sensor Observation Service that

addresses data access for the Internet of Things (IoT).

The vision of IoT is that of devices all over the world directly connected to the Internet to allow

data retrieval and control.

This OGC standard is actually divided into two parts: the former dealing with access to data

(Sensing Profile) and the latter is about control of devices (Tasking Profile) and in the context

of Highlander we can ignore it.

Page 8

SensorThings API provides a RESTful, JSON encoded API to retrieve data and metadata about

‘things’ that generate streams of data. The underlying information/resource model for the API

uses Observation and Measures (O&M) and has been influenced by the other Sensor Web

Enablement (SWE) standards.

The API follows patterns defined by the OData protocol. Table 1 shows the main differences

between the previous standard SOS.

Feature SensorThing SOS

Encoding JSON XML

Architectural Style Resource Oriented Architecture Service Oriented Architecture

Binding REST SOAP

Pagination $top/$skip/$next Link Not supported

Pub/Sub Support MQTT and SensorThings MQTT
Extension

Not supported

OGC model link Location entity Confusion between feature and
feature of interest

Insert new Sensors and
Observations

HTTP POST SOS specific interface:
RegisterSensor() and
InsertObservation()

Deleting Existing Sensors HTTP DELETE SOS specific interface:
DeleteSensor()

Updating Properties of Existing
Sensors or Observations

HTTP PATCH and JSON PATCH Not supported

Deleting Existing Observations HTTP DELETE Not supported

Linked Data Support JSON-LD Not supported

Table 1 - MAIN DIFFERENCES BETWEEN STA AND SOS

2.1.1 Data model

SensorThings splits the O&M model across two classes: Datastream and Observation.

Datastreams are the top-level class with a subset of the O&M Observation properties:

observedProperty, resultTime, phenomenonTime. The observations property is analogous to

result in the OM_Observation type, but in this case contains a set of Observation objects. Each

of these is typed according to its observation type from O&M (Measurement, Geometry etc.).

Page 9

The OGC SensorThings API data model not only covers plain sensor measurements, but also

metadata like the unit of the measurement, a sensor description or a location. The metadata is

connected to the original data stream.

The data elements are linked to each other enabling the user to find all necessary information

of interest. The data model consists of eight entities, including properties and relations, which

are shown in Figure 1.

Figure 1 - SensorThings data model (Open Geospatial Consortium, 2016)

A Thing is a virtual or physical object. Depending on the use-case, the Thing can be the object

being observed, like a river section, or the sensor platform, such as a satellite. Location

describes the position of a Thing. A position can be described through geographic locations,

encoded as points or areas. Symbolic locations, like a postal address, are possible, too. The

HistoricalLocation is the link between a Thing and a Location, with the time indicating when the

Thing was in a certain Location. A moving Sensor has several HistoricalLocations. A motionless

Thing has none. This is defined through the SensorThings API, where the HistoricalLocation is

created, when the Thing moves for the first time. A Sensor generates the data, which is

described through the OGC SensorThings API Data Model. A Sensor can collect multiple

Datastreams. A weather station for example can collect both temperature and humidity; in this

Page 10

example, the Sensor weather station would have two entities Datastream, one for each

temperature and humidity. Observation contains the measurement made by a Sensor. An

ObservedProperty is a characteristic of the FeatureOfInterest that is observed by a Sensor. For

example, the water level in a river, or its temperature. A Datastream unites Observations of an

ObservedProperty, which were made by a Sensor and are linked to a Thing. The

FeatureOfInterest can be the geographic area or location for which an Observation was made.

This can be the same as the Location of the Thing, which is often the case for in-situ sensing. In

the case of remote sensing, the FeatureOfInterest can be different from the location of the

Thing, dependent on what is chosen as Thing. The FeatureOfInterest is a geographical point or

a polygon encompassing an area or volume, usually encoded in the format GeoJSON. The

relations between all these entities are described through the data model; this ensures finding

all data entities that belong to another and only make sense in their own context.

2.1.2 REST

The OGC SensorThings API offers a RESTful interface for accessing the stored data. The REST

programming paradigm is a well-known approach for realizing distributed systems. It is based

on top of the Hypertext Transfer Protocol (HTTP), which forms the basis of the World Wide

Web. REST is used for inter-machine communication and is widespread around web services.

Alternatives are for example SOAP or Remote Procedure Calls.

The idea of REST was developed by Roy Thomas Fielding, published in his dissertation in

(Fielding, 2000).

Fielding presents principles, which every REST-service must follow without suggesting how to

implement them. The principles are described in the following. The first principle is the Client-

Server Architecture, known from the World-Wide-Web. A server offers a service, which can be

requested by a client. Through the usage of the widespread HTTP-protocol, a REST client

implementation is available for nearly every programming language. The second characteristic

of a RESTful service is its statelessness: every message sent to a REST service must contain all

information needed to process this request. This brings two benefits: firstly, the service can be

scaled according to the required usage. Secondly, it decreases complexity, since all information

is summarized and no application state needs to be shared between two requests. Other than

its alternatives, REST demands unified interfaces. This contains for example the addressing

scheme. Every entity in REST has to be uniquely identifiable, which usually is implemented

through Uniform Resource Locators (URLs). The representation of entities is often achieved

through JSON. Requests to the server are transmitted via HTTP. Thus, the HTTP-methods GET,

POST, PUT, PATCH and DELETE are used to interact with the server. Hereby, GET is used to

Page 11

request information. To create a new instance of an entity the POST operation is used. By

sending PUT (overriding a whole entity) or PATCH (overriding only provided attributes)

messages, existing entities can be modified. DELETE is finally used to remove entities. For the

SensorThings API, this means when entering the main URL of a SensorThings API server in a web

browser, a GET request is issued to the server. The response of the server will contain a JSON

file as shown in Figure 2.

Figure 2 - Response from the STA server base URL

Page 12

The response contains all data model entities, as well as their URLs. Through these URLs, each

individual on the server is addressable. Analogous to fetching data, an instance can be created,

modified or deleted by sending a POST, PUT, PATCH or DELETE command to the appropriate

URL. Since the database can contain a large amount of data, only a subset of all available data

is returned for a GET command. This prevents both the server, as well as the client from an

overload. Further data is sent upon request.

2.1.3 ODATA

The previous section showed how data can be retrieved and modified by using the REST

interface. For many applications, it is not sufficient to retrieve all available data. Conditional

upon the large variety of stored data, powerful and expressive filter mechanisms are required

to receive the data of interest. In the SensorThings API, these are realized by applying the Open

Data Protocol (OData), which is standardized by the Organization for the Advancement of

Structured Information Standards (OASIS). It allows projections and filters similar to the

Structured Query Language (SQL), which are specified as query strings in the URL. Projections

can be done by naming the queried attributes in the $select parameter. For example,

/Things?$select=@iot.id, description will only select the id and the description of Things.

By passing the $filter parameter, it is possible to query for specific results. For example,

/Observations?$filter=result gt 5 will return all observations that have a result value greater

than 5. A wide range of filtering operators are supported; an exemplary list of supported

functions is shown in Figure 3.

Figure 3 - Exemplary list of functions that can be used with OData in the URL of requests

2.1.4 MQTT

Message Queuing Telemetry Transport (MQTT) is an open-source protocol standardized by

OASIS that follows the publisher-subscriber pattern. Compared to other P&S protocols, MQTT

is lightweight and minimises the network bandwidth and the device resource requirements, so

it is suited for collecting the data of IoT-sensors.

Page 13

By using this pattern, subscribers can register to a topic, which broadcasts information they are

interested in. The information is initially provided by a publisher that sends a message to the

corresponding topic as soon as it gets available. A message broker (included in a SensorThings

API compliant server) takes care of the subscriptions and forwards the messages to all the

subscribers registered to the topic. A topic is a string that can have several hierarchical levels,

separated by a slash. Through this, a client receives only the information published within these

topics. The naming of the topics is analogue to the URLs of the entities in the SensorThings API

implementation.

An implementation of the SensorThings API offers, next to the RESTful HTTP interface, an

additional MQTT interface. This interface is two-folded: that is, the server can act as a subscriber

towards a sensor that publishes its observations, collect these data and store them. On the

other side, a client, that could be a processing component, can subscribe to a server topic

corresponding to this datastream to get the observations and, for example, trigger some action

when a threshold is reached. It’s not mandatory to use MQTT on both side of the data flow, i.e.

the observations could be ingested into the server via HTTP channel.

A possible use case, suitable with the Natural Parks scenario, could be that of the battery

voltage measures that each TT+ device sends to the server, along with the other observations,

and a process that listens to the corresponding MQTT topics and that triggers an alert, like an

email, as soon as the voltage falls under a prefixed value. Since TT+ data do not arrive into the

server with a very high frequency, here the plus is mainly that clients do not have to poll server

to gather new data: it’s the MQTT protocol that implements a push model.

Figure 4 - Simple use of the MQTT broker

Page 14

2.2 Natural parks IoT data

The goal of this DApOS is to analyse tree functional biodiversity by collecting a bunch of

biological indicators of the vital functions of trees in a forest environment. These data will be

collected by two clusters of Tree-Talker+ sensors. Each cluster is formed by 25 TT+ devices and

monitors respectively a group of beeches and one of spruces; both are deployed in Val Canali.

Figure 5 - TreeTalker+ device on the left image (battery pack is the lower box). TT cloud transmitter with an additional solar
panel in the top right image. A portion of a deployed TT+ cluster in the bottom right image.

Tree-Talker device version “TT+” measures simultaneously important individual tree scale eco-

physiological parameters as well as some additional ecosystem-related variables.

Key parameters are:

• Tree radial growth, as an indicator of photosynthetic carbon allocation in biomass

• Sap flow, as an indicator of tree transpiration and functionality of xylem transport

• Xylem moisture content as indicator of hydraulic functionality

• Light penetration in the canopy in terms of fractional absorbed radiation

• Light spectral components related to foliage dieback and physiology

• Tree stability parameters to allow real time forecasts of potential tree fallings.

• Additional parameters such as air relative humidity and air temperature will be also

monitored at high frequency to have comparable time scale between abiotic

parameters and short-term plant responses.

The Tree-Talker devices are connected by using LoRa protocol of radio communication to the

gateway TT-Cloud. TT-Cloud can receive and store data up to 48 devices in one cluster (a

maximum of 20-30 is suggested in practice to avoid data collision) and data transmission is

Page 15

typically set at hourly frequency although customizable. The TT-Cloud is in turn connected to

the internet via GPRS network and sends data to a computer server. TT-Cloud can cover devices

spread approximately in a radius of 3 kilometers provided the area is reasonably flat without

many obstacles. The direction of TT-Cloud should be toward watching other Tree-Talker;

however, an external antenna will facilitate the signal coverage.

Figure 6 - The TT-cloud gateway

2.2.1 Mapping TreeTalker network to SensorThing entities

The Tree-Talker scenario maps its objects into the STA sensing entities quite easily, but there

are some peculiarities that must be highlighted and that will be illustrated in the next

paragraphs.

Note that we will try to remain inside the standard specifications of STA because this is the key

of the harmonization and it ensures the maximum level of interoperability.

We will also take advantage of the new features of the standard introduced with version 1.1:

all entities (except for HistoricalLocation) now have a field of the type JSON Object that can be

used to store additional information about the object. In version 1.0 such a field already existed

for the Thing entity (named properties), and for the Observation entity (named parameters).

These fields can be used in filters and are completely customizable since the JSON dictionary

implements a key-value pair paradigm.

Page 16

 Numerosity

STA Entity TreeTalker Entity # TT+ # TT-R # TT-CL # Total

Thing TreeTalker device 40 1 2 43

Location TreeTalker’s location 40 1 2 43

Sensor
Growth sensor, gravity sensor,
spectrometer, etc

7*40 = 280 3*1 = 3 4*2 = 8 291

ObservedProperties
Battery ADC, Stem Radial
Growth, Air Temperature, etc

22 22

Multi/DataStream
Time series identified by:
OP, T and Sensor.

17*40= 680 6*1 = 6 6*2 = 12 698

FeatureOfInterest Tree 40 1 2 43

Observation Time and value of observation 1 per hour per Multi/Datastream
698 * hour

of
observation

Table 2 - Mapping of entities and numerosity of instances

2.2.2 Things

The TreeTalker+ (TT+) device fits into the concept of Thing, that STA data model describes as a

sensor platform or a station that is capable of being identified and integrated into

communication networks. A TT+ is able to transmit observations to a server and contains

several Sensors, that is, devices that respond to a physical stimulus producing a measure of its

intensity or other quantitative parameter.

So, in our mapping there will be a Thing for each of the TT+ boxes installed and one for the

unique TT-R (a similar device that hosts only environmental sensors). Finally, since the TT-cloud

concentrator is also capable of doing measures that are sent along with the others observations

(the strength of the transmission links with the connected TT+s and of the downlink with the

GSM Base Transceiver Station and some other operational parameters), even this device is

modelled as a Thing.

2.2.3 Sensors

In our mapping, a Sensor is the single device contained in one of the TT* boxes that observes a

certain biological or physical parameter. We may have simple and complex sensors (meaning

with “simple” a sensor that observe a single parameter) and, according STA model, also

Page 17

processes that executes software algorithms on raw measures to calculate derived values can

be considered as sensors or part of them.

In our case, inside a TT+ deployed in-situ, we have mostly physical electronic devices with or

without embedded computing components that produce the values of only the parameters

they measure directly (like a frequency instead of a humidity value) that is the values of an

electrical parameter (digital or analogic) without finally transforming it into the measure of the

correlated physical/biological phenomenon.

The procedures needed to obtain the physical/biological parameter of interest must then be

executed on these raw observations by specific processes that run on the server. Some of them

will be embedded in the ingestion processes, since the functions they implement take as input

only the instantaneous raw values coming from the sensors; others apply an aggregation of

values over time and thus it would be much more complicated calculate this function along the

ingestion data flow and so will be implemented as batch scheduled processes once the raw

data have been stored in the DB. This is the case of “SAP flow” parameter, but we’ll analyze it

in detail later.

For the sake of simplicity, even though the processing of the raw signals is temporally and

spatially separated from the in-situ devices, we will consider these processing components fully

part of the related sensors. The O&M specifications (Observations & Measurements) to which

the STA standard refers for the data model, have foreseen the required time attributes to

differentiate between the moment an observation is made and when it has become available,

and we’ll use these attributes to properly characterize raw and calculated observation.

Name Description Metadata TT+ TT-R TT-CL

SapFlowSensor
Modular probes for
sap flow

Reference and heated temperature
probes (±0.1 °C).
Thermistors manufacturer: Murata
Electronics.
Model: NCU18XH103F6SRB.

X

StemHumiditySensor Stem humidity
Capacitive sensor MicroPCB (20x3x2)
mm with copper plates.

X

GrowthSensor
IR radial growth
sensor

Infra-red distance sensor (±100 μm)
Manufacturer: SHARP.
Model: GP2Y0A51SK0F.

X

Battery
Long life batteries or
solar panel

Battery: 4 Li-Ion batteries + solar
panel (3.7 V)

X X X

GravitySensor
Accelerometer for tilt
angle determination

Accelerometer (± 0.01°)
Manufacturer: NXP/Freescale. Model:
Si7006

X

Page 18

Spectrometer
Twelve bands
spectrometer

Radiometer-12 spectral bands (450,
500, 550, 570, 600, 610, 650, 680,
730, 760, 810, 860 nm) (± 10 nm or
±20 nm).
Manufacturer: AMS.
Model: AS7262 (Visible range),
AS7263 (Near Infra-Red range)

X X

WeatherSensor
Air temperature and
humidity sensor

Thermohygrometer (±0.1 °C ; ±2 %).
Manufacturer: Silicon Labs.
Model: MMA8451Q

X X

ModemRouterLoRa
Modem/router LoRa
protocol

868 MHz with external antenna X

ModemGPRS Modem GPRS X

FlashMemory
Flash memory for
data storage

16 Mbyte X

Table 3 - Identified Sensors with correspondent type of Thing in which you can find them

2.2.4 ObservedProperties

An ObservedProperty is an aspect of physical phenomenon that a Sensor can observe and

measure. At first, one could imagine that in our scenario the only ObservedProperties we deal

with are those of strict interest for the analysis domain, that is the tree vital, biological and

structural parameter (sap flux, xylem moisture, trunk radial growth …), but we must take into

account even the sensor platform’s indicators like battery voltage or the radio transmission

power to implement some quality checks on data and to monitor the operations and eventually

schedule some maintenance interventions. Furthermore, at this stage of the project1, is

important to store the raw and instrumental observations because, if some issues should

emerge from the data analysis regarding the adopted algorithms, we could always reapply to

the raw data the adjusted transformations.

Thus, we could identify three types of the ObservedProperties:

• raw properties, numbers from digital electronics or analogue electrical values that do

not measure directly a domain physical/biological phenomenon, neither an operational

physical phenomenon2.

1 When the analysis of the results will confirm the various algorithms used to produce calculated observations, we
could get rid off the raw or instrumental observations and do not collect them any more for further campaign of
observation.
2 The result of the IR sensor that send an impulse toward the surface of the trunk.

Page 19

• instrumental properties, a physical, but meaningless parameters3 in terms of domain of

analysis; ,

• biological properties, the aspect of the real biological phenomenon4 we are interested

in. To keep it simple, we will consider in this category even meteorological parameter

like air temperature and humidity.

We will use the properties attribute to tag ObservedProperties with their category.

{

 "@iot.id": "FreqUnheatedSensor",

 "name": "FreqUnheatedSensor",

 "description": "Frequency measurement on the unheated sensor",

 "definition": "https://www.unitus.it/iot/terms/observedproperties/ FreqUnheatedSensor ",

 "parameters": {

"category": "raw"

 }

}

Snippet 1 -Sample instance of a raw ObservedProperty

{

 "@iot.id": "TrunkSurfaceDistance",

 "name": "TrunkSurfaceDistance",

 "description": "Distance of the trunk surface from a point kept at a fixed distance from

the xylem",

 "definition": "https://www.unitus.it/iot/terms/observedproperties/TrunkSurfaceDistance",

 "parameters": {

"category": "instrumental"

 }

}

Snippet 2 -Sample instance of an instrumental ObservedProperty

{

 "@iot.id": "StemRadialGrowth",

 "name": "StemRadialGrowth",

 "description": "Growth of the trunk measured on a radius",

 "definition": "https://www.unitus.it/iot/terms/observedproperties/StemRadialGrowth",

 "parameters": {

"category": "biological"

3 For instance, the “sap flow” is derived from the temperatures of a heated sensor and of an unheated one,
measured at the start and at the end of a specific interval of time: these temperatures are yet physical parameters,
measured in degree Celsius, but meaningless if considered by themselves.
4 The Radial Growth of Trunk or the Sap Flow are some of these properties.

Page 20

 }

}

Snippet 3 -Sample instance of a biological ObservedProperty

Biological ObservedProperties often must be calculated by some function applied by a

computing component that can be fully integrated with the device or not.

In this latter case, that of a distinct elaboration phase, we must have available the raw or the

instrumental properties. When the calculated properties are the result of a simple and

invertible function you could avoid storing the input values because, if you need them, you can

easily obtain them back by reversing the calculation. This is the case of the battery voltage or

the air temperature. Notwithstanding this consideration, we will store all types of raw

observations except those to which only a change of unit of measure is applied.

Important: some parameter will not be mapped as ObservedProperty, since they are not per se

interesting, but they will be attached to an observation for which they describe an

environmental condition or bring additional information. In these cases, when creating the

instance of the related Observation, we will attach the value of these parameter as a

“parameters” attribute, that is key/value pair of a JSON object assigned as value of this attribute

of the Observation.

The standard deviation of each acceleration falls into this kind of parameter and so does the

battery voltage for Stem Radial Growth or the probe temperature for the frequency

measurement.

{

 "phenomenonTime": "2020-05-12T13:00:00.000Z",

 "resultTime": "2020-05-13T12:00:00.000Z",

 "result": 32.0,

 "parameters": {

"voltage": 9.87

 }

}

Snippet 4 - Sample observation with parameters attribute

In Table 4 there is the list of ObservedProperties that we have identified in the system; for these

properties there will be incoming streams of Observations from the various Things that will be

stored in the STA repository.

In this table the unit of Measure (UoM) is associated to the property: STA model attaches UoM

to DataStream and the same ObservedProperty could be associated to different DataStreams

Page 21

with different UoM (i.e. you could store the very same observation of Air Temperature as two

Observations, one measured in °F and one in °C). Since this is not our intention, for the sake of

understanding we show here the information of UoM, but we will strictly follow the STA data

model.

Co-financed by the Connecting Europe

Facility of the European Union

Co-financed by the Connecting Europe

Facility of the European Union

Co-financed by the Connecting Europe

Facility of the European Union

Name Description Category TT+ TT-R
TT-

cloud
Calc’d UoM Dependencies

IRSensorDistance
Reading from the infra-red pulsed distance
sensor positioned at few centimetres away
from the tree trunk’s surface

Raw X d.n.

TrunkSurfaceDistance
Trunk surface distance derived from raw
reading of infra-red pulsed distance sensor

Instrumental X X cm
IRSensorDistance
BatteryADC (parameter)

StemRadialGrowth Growth derived from trunk surface distance Biological X X cm TrunkSurfaceDistance

TempUnheatedSensor
Temperature on sensor not heated
(reference probe) at the beginning of
measurement

instrumental X °C 10-1

TempHeatedSensor
Temperature on heated sensor at the
beginning of the measurement

instrumental X °C 10-1

TempUnheatedSensorEnd
Temperature on sensor not heated at the
end of measurement

instrumental X °C 10-1

TempHeatedSensorEnd
Temperature on sensor heated at the end of
measurement

instrumental X °C 10-1

SapFlow
Sap flow according to the thermal
dissipation method (TDP) of Granier

Biological X X g m-2 s-1
TempUnheatedSensorEnd
TempHeatedSensorEnd

FreqUnheatedSensor
Frequency measurement on the unheated
sensor

Raw X Hz

XylemMoistureContent Estimated amount of stem humidity Biological X X %
TempUnheatedSensor (parameter)
FreqUnheatedSensor

AirRelativeHumidity Air relative humidity Biological X X %

AirTemperature Air temperature Biological X X X °C 10-1 Change of UoM (°C 10-1
→ °C)

TreeAcceleration
Acceleration and variance along the (Z,Y,X)
dimensions

Raw X d.n. Variance (parameter)

Page 23

TiltAngle
The angle between the gravity vector and
the z-axis

Biological X X degree TreeAcceleration

TransmissionSpectrum
Canopy light transmission in 12 bands: 610,
680, 730, 760, 810, 860, 450, 500, 550, 570,
600, 650 (unit unknown)

Instrumental X X [unknown] Linear mapping from raw reading

IncidentSpectrum
Canopy incident light in 12 bands: 610, 680,
730, 760, 810, 860, 450, 500, 550, 570, 600,
650 (unit unknown)

Biological X X [unknown] Linear mapping from raw reading

BatteryADC Battery analog to digital converter Raw X X d.n.

BatteryLevel Battery level Instrumental X X X mV BatteryADC (only for TT+, TT-R)

AccumulatedRecords Accumulated records in memory Instrumental X pure number

NumberOfRecordsToSend
Number of records that still needs to be
send to the server

Instrumental X pure number

GSMFieldLevel GSM field level Instrumental X [unknown]

RSSIRadioSignalStrenght
RSSI received radio signal indication
strength between TT+ & TT-CL (21)

Instrumental X dBm

Table 4 – ObservedProperties. Rows are grouped by sensor.

Co-financed by the Connecting Europe

Facility of the European Union

Co-financed by the Connecting Europe

Facility of the European Union

Co-financed by the Connecting Europe

Facility of the European Union

2.2.5 DataStreams

A DataStream represents a time series of observations registered by a specific Sensor, made

available by a specific Thing and regarding a specific ObservedProperty.

2.2.6 Locations

A Location in STA data model is the geographical position of a Thing. This for most of the in-situ

sensor scenario, and thus also for our case. A point geometry type is the most appropriate type

of location.

2.2.7 FeatureOfInterest

This entity represents the real-world object that is the target of the Observations. Not always is

possible to identify such an object: if you’re remote sensing an area from an aircraft or a

satellite, the feature of interest is rather a geographical area than a physical object, or if you

have an anemometer even this spatial meaning could have fading borders.

In our case, the individual tree to which the sensor is attached is indeed the FeatureOfInterest.

and to this object we can attach information like the tree species, its height, the estimated age…

TT-R and TT-cloud stations are as well attached to trees, but only serving as a physical support

because the sensors are not measuring their biological/physical parameter, but weather or

transmission related parameters. So, the FeatureOfInterest for the TT-cloud could be the

polygonal area that contains the TT+s linked to it, calculated as the convex hull of their locations,

as shown in Figure 7.

Figure 7 - Convex hull of locations of a TT+ cluster

Page 25

For a TT-R station, since it measures weather conditions that can be considered similar up to a

certain distance, we could think of a minimum circle that includes all the deployed stations with

centre in the TT-R location.

2.2.8 Identifier

Defining nomenclature rules for the data model instances is quite important because the

process of initial creation of the database and the following ingestion of observations depend

on these rules.

Our choice has taken into account even the way data are made available by the TT* devices and

the constraints of the STA data and service models.

To recap, our boundary conditions were:

• each data row coming from the fields stations contains the serial number (SN) of the

TT+ that produced it.

• there’s not a preliminary identification by means of a registry number of the trees

subject to the monitoring; only their position is acquired via GPS and registered. These

coordinates are not recorded on the device but are kept externally.

• When inserting observations, STA data and service models force you to indicate the

Datastream they belong to together with the related FeatureOfInterest.

The identifiers could be:

• managed by server

• managed by client

• hybrid mode: both server and client can define identifier.

The last configuration is the one that best fit our needs: in fact, we can use the client-defined

identifiers for those entities that are stable or that change very rarely and that are inserted into

the database during its start-up phase, that is:

• Location

• Sensor

• Thing

• Datastream

• ObservedProperty

• FeatureOfInterest

Any instance of these entities needs to be identified properly by a user because almost every

use case are query like “which ObservedProperty is collected by Sensor X?” or “which Sensors

are contained in Thing Y?” or “give me the Observation gathered by Sensor X regarding

Page 26

ObservedProperty Z” thus their identifiers should better be “meaningful identifier” that a

human can guess knowing some characteristics of the object he/she’s looking for.

Observations instead are automatically produced by sensors and rarely need to be identified

individually by the user, so we’ll let the system assign an identifier.

Said this, the SN of the TT+ device becomes fundamental for the construction of the identifiers

of the following entities:

Entity Pattern example

Location Loc_<SN> Loc_21990671

Sensor <TypeOfSensor>_<SN> ModularProbes_21990659

Thing TT_<SN> TT_21990699

DataStream DS_<ObservedProperty>_<SN> DS_TiltAngle_21990668

Table 5 - Rule for naming static entities that depend on Things

The remaining “static” entities are independent from the TT+ devices, that is an

ObservedProperty observed by a Sensor belonging to a TT+ Thing, but it can be observed also

by a totally different Sensor belonging to another Things located at the opposite side of the

world. The FeatureOfInterest is independent as well the tree has been there before the Thing

was installed and will continue to exist after the Thing will be removed. For this kind of entities,

the naming rule are quite different:

Entity Pattern/rule example

ObservedProperty
meaningful name of the property,

CamelCase formatted
TreeAcceleration

FeaturesOfInterest <area>_<tree species>_<sequence> paneveggio_fir_0001

Table 6 - Rule for naming static entities indepedent from Things

Finally, for the Observations, we’ll let the server create the. That’s the type of identifier that

will be used for Observations.

Entity Pattern/rule example

Observation UUID 77957484-9162-11eb-8243-9f2433bacadb

Table 7 - Rule for dynamic entities Observations

Page 27

IMPORTANT: during the ingestion phase, the process that implements the automation will

detect the SN inside the Observations data coming from a cluster of TT+ devices. With this SN,

the process will identify the correct DataStreams to which append the various Observations,

but it needs to know the correct FeatureOfInterest too. There’s no manner to infer this

information from the Observations flow and, therefore, one should store the Thing-FoI pairing

is some external data structure that will be looked-up by the process. If a TT+ is substituted

completely (it’s something that may happen), a new Thing, new Sensors and new Location shall

be created (and a new DataStream, too), but the ObservedProperties and FoI shall remain the

same: thus the pairing information shall be updated as well.

2.2.9 Versioning of sensor devices

It’s possible that during its period of duty, a TT+ device is subject to a maintenance intervention

aiming to an upgrade of a contained Sensor in terms of hardware or firmware. Both type of

upgrade can be backward-compatible, but also could break this compatibility, meaning that

observations streaming from the sensor after the intervention could not be comparable

anymore with those collected before.

In both cases we must trace this upgrade event and be able to obtain information of the sensor

version that collected an observation. On the other side, when the upgrade maintains backward

compatibility, it should be easy to treat the relative observation time series as one.

Another requirement is that the usual procedure adopted till now is to version the whole TT+

box, i.e.: a firmware update that improve or resolve some issue only for the accelerometer,

results in a new version of the TT+. In order to keep track of these changes over time, a

Datastream called “version” will be created and its ObservedProperty will be the TT+ version.

The observation will also contain the upgrade date. Searching among these observations the

user can get the validity period of a particular version or the version that was active at a certain

time.

To recap:

• If a backward-compatible upgrade is made to one or more Sensors or part of them, a

new observation will be added to version Datastream with the new version installed,

the date of installation and the information about the new version.

• If non-backward-compatible upgrade is made, together with the above updates, a new

Sensor must be created along with a new DataStream added to the Thing and the old

Sensor must be ceased.

Page 28

2.3 Forest fire predictions and controls

The aim of this DApOS is to produce maps of fire risk and of variables relevant to fire prevention

and control, in selected forested natural parks of the Puglia regions, based on climate, remote

sensing, and proximal sensing data properly integrated thanks to machine learning and Big Data

analysis tools. Specifically, a regional network of TreeTalker and TreeTalkerFire in-situ stations

allow the characterization and continuous monitoring at tree level of selected parameters that

are acknowledged to be important in triggering and fostering forest fires. In total 240 sensors

are distributed in 4 regional parks area (120 are TreeTalker devices and 120 TreeTalkerFire

devices). The TreeTalkerFire variables are:

• Air temperature,

• Relative humidity,

• Foliage Temperature,

• CO2 concentration,

• O3 concentration,

• PM2.5 and PM10 concentration,

• Presence of Flame.

All the previous considerations made for TreeTalkers regarding management of data are also

valid for TreeTalkerFires. The main differences between the two systems are the sensors

mounted on the devices and the way the data will be used. Fire prevention needs an almost

real time monitoring and the data should be treated accordingly, this consideration explains the

presence of a variable called “Presence of Flame” that is a flag triggered in case of fire. However,

the use of the data does not regard their storage but their analysis.

Page 29

2.4 IoT for animal wellbeing

Animaltalker device is currently under development but the managing of the data can be

described knowing its characteristics.

An Animaltalker is a device that can receive data via Bluetooth from different sensors called

animal buttons. Each button is composed of a sensor, a battery and a Bluetooth microchip with

its antenna. It sends the data collected in a string format using a BLE (Bluetooth Low Energy)

service. The Animaltaker gathers all the strings with their IDs and makes them available over

the internet. The buttons under development now are:

• A skin temperature button;

• A movement button (using a 3 axis accelerometer);

• An under skin temperature button;

• A heart rate button.

The AnimalTalker has a GPS module, an environmental temperature and humidity sensor, a NB-

IoT/4G/5G module to allow internet connection and the possibility to mount a LoRa module to

work also in places where obtain a good internet connection is particularly challenging.

2.4.1 Mapping AnimalTalker network to SensorThing entities

Most of the comments made for TreeTalkers are valid for the AnimalTalker network. There is

also the will to use the same data structure for all the networks of the project. A major

difference between the two systems is that the animal position will change over time so the

“HistoricalLocation” entity will be used to keep track of the subsequent animal GPS coordinates.

STA Entity AnimalTalker Entity

Thing AnimalTalker device

Location Animal last GPS coordinates

HistoricalLocation
Previous animal GPS

coordinates

Sensor
Buttons and AnimalTalker

sensors

Page 30

ObservedProperties
Movements, skin temperature,

under skin temperature, …

Multi/DataStream
Used if a particular button will

send related multiple data

FeatureOfInterest Animal

Observation Time and value of observation

Table 8 – AnimalTalker mapping of entities

2.4.1.1 Things

The AnimalTalker will be considered a Thing while the buttons will be Bluetooth Sensors. If the

device will work using LoRa protocol, the LoRa gateway will also be considered a Thing.

2.4.1.2 Sensors

As stated above, in our mapping a Sensor will be the single Bluetooth button but also the

AnimalTalker itself will host some sensors such as the environmental humidity and temperature

sensor and even the LoRa gateway will send some useful data. The buttons will have a microchip

more powerful than the TreeTalker one. Therefore, some sensors will present on their software

suitable algorithms to perform on chip the analysis of measurements. Further analysis could be

performed server side such as the ones that require an aggregation of values over time and for

this reason must be analysed using batch scheduled processes. All the data derived from the

same physical electronic device will be considered part of the related sensor.

Name Description Button AnimalTalker
LoRa

gateway

SkinTemperatureSensor
Temperature sensor

placed on animal skin
X

UnderSkinTemperatureSensor

Temperature
measured by an
under skin RFID

sensor

X

MovementSensor

High frequency
accelerometer to

detect specific
animal movements

X

Page 31

HeartRateSensor
Optical heart rate

sensor
X

WeatherSensor
Air temperature and

humidity sensor
 X

Battery Battery level X X X

ModemRouterLoRa
LoRa protocol

Modem/router
 X

ModemGPRS
NB-IoT/4G/5G

module
 X X

Table 9 - Identified AnimalTalker sensors with correspondent type of Thing in which you can find them

2.4.1.3 ObservedProperties

The measured physical phenomena are related to sensors described in the previous paragraph.

We will always save, if possible, the raw data because they represent the true measured value,

thus the reference one. However, taking into account some sensors such as the 20 Hz

accelerometer, the raw data should be sent only during the first stage of the project to allow

the analysis of the phenomenon measured. In every day conditions, the amount of data

collected would be too much to be made available over the internet (the value of this kind of

data changes quickly). For this reason, data should be saved locally and an algorithm should be

uploaded on the button to send only the final output. The algorithm could also monitor the

changes in the measure of interest and start the data collection when a particular condition is

reached. Some performed measurements can be more interesting when related with other

parameters. In these cases, the main information will present the value of the secondary one

as a “parameter” attribute, which is a metadata of an ObservedProperty.

In conclusion, also for AnimalTalker we will use three types of the ObservedProperties:

• raw properties, numbers from digital electronics or analog electrical values that do not

measure directly a domain physical/biological phenomenon, neither an operational

physical phenomenon.

Page 32

• instrumental properties, a physical, but meaningless parameters in terms of domain of

analysis; ,

• biological properties, the aspect of the real biological phenomenon we are interested

in. To keep it simple, we will consider in this category even meteorological parameter

like air temperature and humidity.

In Table 10 there is the list of ObservedProperties that we have identified in the system; for

these properties there will be incoming streams of Observations from the various Things that

will be stored in the STA repository.

Now, we do not fully know all the analysis that will be performed over data collected and if they

will be implemented server side or button side. Thus, we listed on Table 10 some examples of

the data that will be saved on the database but they should not be considered conclusive.

Co-financed by the Connecting Europe

Facility of the European Union

Co-financed by the Connecting Europe

Facility of the European Union

Co-financed by the Connecting Europe

Facility of the European Union

Name Description Category Button AnimalTalker
LoRa

gateway
UoM

SkinTemperatureAnalog
Output of insulated surface

temperature sensor placed on a
meaningful position.

Raw X d.n.

SkinTemperature
Temperature of animal skin derived

from the surface temperature
sensor.

Instrumental X °C

BodyTemperature
Animal Core temperature obtained

using skin temperature and air
temperature and humidity.

Biological X °C

UnderSkinTemperature
Temperature measured by an

under skin RFID sensor.
Biological X °C

MovementAnalysis

Movement readings performed by
a high frequency accelerometer to

detect particular movement
patterns of the animal.

Instrumental X

HeartRateOptical
Measures obtained by an optical

heart rate sensor that can be
related to the animal heart rate.

Raw X d.n.

HeartRate Animal heart rate Biological X bpm

AirRelativeHumidity Air relative humidity Biological X %

AirTemperature Air temperature Biological X °C

BatteryLevel Battery level Raw X X X

SupplyVoltage Battery supply voltage Instrumental X X X mV

GSMFieldLevel GSM field level Instrumental X X

RSSIRadioSignalStrenght
RSSI received radio signal indication
strength between TT+ & TT-CL (21)

Instrumental X dBm

Table 10 – AnimalTalker ObservedProperties. Rows are grouped by sensor.

Co-financed by the Connecting Europe

Facility of the European Union

Co-financed by the Connecting Europe

Facility of the European Union

Co-financed by the Connecting Europe

Facility of the European Union

2.4.1.4 DataStreams

A DataStream represents a time series of observations registered by a specific Sensor, made

available by a specific Thing and regarding a specific ObservedProperty.

2.4.1.5 Locations and HistoricalLocations

Positioning is particularly important in this project because animals move during the day. For

this reason, the device has a GPS module that can provide geographic coordinates that will be

saved in Locations. Every time the field will be updated, the old position will be stored in

HistoricalLocations.

2.4.1.6 FeatureOfInterest

This entity represents the real-world object that is the target of the Observations. The

AnimalTalker FeatureOfInterest will be the animal itself. This field is particularly useful to

identify the animal and to storage its characteristic like breed, feeding, age, etc.

2.4.2 Identifier

Identifiers are IDs used by the database to identify univocally an entity. The IDs can be chosen

by the database in an automatic way or by the user. We choose to use the latter because the

IDs are used to create, update and delete an entity so select them following a method that is

easy to understand and that can be automated is of primary importance. AnimalTalker identifier

and the name of the entity will compose the database entities identifiers. The reason behind

this choice is that each string sent by every device to the server will start with the device id and

the users will know the ids of their device so using the protocol previously described will make

the system managing easy. Only the ObservedProperties will be identified using an id chosen

by database itself because the measurements values should not be modified.

2.4.3 Versioning of sensor devices

A change in AnimalTalker version will be treated in the same way of a change in TreeTalker

version.

Page 35

3 Harmonization of climate reanalysis and projections

The climate research community recognizes since years file formats, standards and

conventions favoring further harmonization and enabling interoperability, among

climate-related products but also with other types of data. Climate data are assumed

already harmonized as any variable is provided under the same format. In this

paragraph, the formats, standards, and conventions used in HIGHLANDER for climate

model generated data are described.

3.1 File format

One of the first aspect to consider in climate modelling outputs is the data format.

Climate research consider 3 generic categories: GRIB, NetCDF and HDF. All of these

formats are portable (machine independent) and self-describing, i.e. they can be

examined and read by the appropriate software without the user is expected to know

the file's structural details. Further, additional information about the data, called

"metadata", may be included in the file, e.g. textual information about each variable's

contents and units, or numerical information describing the grid type, the coordinates

(e.g., time, level, latitude, longitude). The most recent and used data formats are as

follows:

netCDF4: Network Common Data Format (Version 4.x)

GRIB2: GRIdded Binary (Edition 2)

HDF5: Hierarchical Data Format (Version 5.x)

NetCDF (Network Common Data Form) is designed to facilitate access to array-oriented

scientific data and is the format most commonly used for climate model generated data.

NetCDF contains a header which describes the layout of the rest of the file, in particular

the data arrays, as well as arbitrary file metadata in the form of name/value attributes.

As said, the additional information about a file or variable is commonly called

"metadata".

There are two versions of netCDF-{3,4}. The netCDF-3 data model was used for many

years and is often referred to as netCDF-classic. However, as datasets became larger,

the grids more complicated, and user desires for more flexibility developed (e.g. support

compression, string variables or parallel processing) the netCDF-4 (nc4) was created.

There are three different software categories used for climate data processing and

visualization: (1) compiled languages (eg., fortran, C, C++); (2) command line

operators and viewers (NCO, CDO, ncview, panoply); (3) interpreted languages (NCL,

GrADS, Ferret, R, Generic Mapping Tools (GMT), Perl Data Language (PDL) , Python

[CDAT/PyNIO/PyNGL/Numpy/matplotlib], and the commercial products Matlab, IDL

and, to a lesser extent, PV-Wave).

http://www.unidata.ucar.edu/software/netcdf/#netcdf_faq
http://www.nco.ncep.noaa.gov/pmb/docs/grib2/
https://support.hdfgroup.org/HDF5/whatishdf5.html
http://www.unidata.ucar.edu/software/netcdf/software.html

Page 36

The typical NetCDF file has several components: (a) dimension names; (b) dimension

sizes of the dimension names; (c) the variables on the file which often include additional

information about each variable and temporal/spatial coordinates; and (d) global

attributes which contain information about the file's contents, authors, post-processing

history etc.

To enable spatio-temporal referencing, the NetCDF file contains coordinate variables

which are defined as one-dimensional variables with the same name as a dimension.

Coordinate variables should not have any missing data (for example, no _FillValue or

missing_value attributes) and must be strictly monotonic (values increasing or

decreasing).

The following is an example of a typical NetCDF file created in HIGHLANDER from Task

4.1 (Downscaling of ERA5 reanalysis, VHR-REA_IT, see Deliverable 4.1), referring to

hourly 2-meter air temperature for 1989 (i.e. 8760 time steps, 24 hours by 365 days).

In the example, time(time), rlat(rlat), and rlon(rlon) are classified as coordinate

variables while T_2M(time,rlat,rlon) is classified as variable. In this case coordinates

are in rotated pole grid, represented by rlat and rlon (see explanation in the next

paragraph).

netcdf file:/C:../T_2M_HLDRea_002_1hr_1989.nc

{

 dimensions:

 time = UNLIMITED; // (8760 currently)

 bnds = 2;

 rlon = 535;

 rlat = 680;

 variables:

 double time(time=8760);

 :standard_name = "time";

 :long_name = "time";

 :bounds = "time_bnds";

 :units = "seconds since 1988-01-01 00:00:00";

 :calendar = "proleptic_gregorian";

 :axis = "T";

 double time_bnds(time=8760, bnds=2);

 float lon(rlat=680, rlon=535);

 :standard_name = "longitude";

 :long_name = "longitude";

 :units = "degrees_east";

 :_CoordinateAxisType = "Lon";

 float lat(rlat=680, rlon=535);

 :standard_name = "latitude";

 :long_name = "latitude";

 :units = "degrees_north";

 :_CoordinateAxisType = "Lat";

 double rlon(rlon=535);

 :standard_name = "grid_longitude";

 :long_name = "rotated longitude";

 :units = "degrees";

 :axis = "X";

 double rlat(rlat=680);

 :standard_name = "grid_latitude";

 :long_name = "rotated latitude";

Page 37

 :units = "degrees";

 :axis = "Y";

 int rotated_pole;

 :long_name = "coordinates of the rotated North Pole";

 :grid_mapping_name = "rotated_latitude_longitude";

 :grid_north_pole_latitude = 47.0f; // float

 :grid_north_pole_longitude = -168.0f; // float

 float height_2m;

 :standard_name = "height";

 :long_name = "height above the surface";

 :units = "m";

 :positive = "up";

 :axis = "Z";

 float T_2M(time=8760, rlat=680, rlon=535);

 :standard_name = "air_temperature";

 :long_name = "2m temperature";

 :units = "K";

 :grid_mapping = "rotated_pole";

 :coordinates = "height_2m lat lon";

 // global attributes:

 :CDI = "Climate Data Interface version 1.9.8 (https://mpimet.mpg.de/cdi)";

 :Conventions = "CF-1.4";

 :history = "Mon Mar 22 18:04:48 2021: cdo selyear,1989 ../pronti/T_2M_HLDRea_002_1hr_1989.nc

T_2M_HLDRea_002_1hr_1989.nc\npost-processing";

 :source = "COSMO";

 :institution = "Fondazione CMCC (Euro-Mediterranean Center on Climate Change) - REMHI Division -

Caserta - Italy)";

 :title = "VHR-REA CCLM downscaling ERA5 (0.02 Deg)";

 :project_id = "HIGHLANDER";

 :experiment_id = "Evaluation with Urban Parametrization, DT=20sec";

 :conventionsURL = "http://www.cfconventions.org/";

 :contact = "Mario Raffa (mario.raffa@cmcc.it)";

 :references = "http//www.clm-community.eu, http://www.cmcc.it";

 :creation_date = "2021-03";

 :CDO = "Climate Data Operators version 1.9.8 (https://mpimet.mpg.de/cdo)";

}

3.2 Convention and Standards

In some cases, the file's contents are written using a standard netCDF convention which

ensures users and automatic software that certain 'rules' have been followed when

creating the file. The two most commonly used netCDF conventions for climate data are

the COARDS and CF. The latter was created in 2003 to address the evolution of models

and data sets and is a superset of the COARDS convention.

CF is evolving and has different version, for example the Copernicus Climate Data Store

accepts versions not before v1.4. A netCDF file can be checked for CF compliance by

using this cf-checker. In HIGHLANDER, exceptions under CF are however considered

acceptable if compliant with the UNIDATA Common Data Model (CDM) to codify the

Coordinate Reference System. This is the case of the _CoordinateAxisType attribute of

the Lat and Lon variables in the file automatically generated by HIGHLANDER climate

model runs, which does not invalidate the correctness of the format.

3.3 Tips and insights

The variables included in the downscaled climate data refers to different “heights”

according to their definition and typical meaning in physical world and/or scientific

https://mpimet.mpg.de/cdo
http://cfconventions.org/
http://puma.nerc.ac.uk/cgi-bin/cf-checker.pl
https://www.unidata.ucar.edu/software/netcdf-java/v4.6/CDM/

Page 38

literature. Some variables (e.g. precipitation) are related to the surface, others to 2 or

10 m above ground (like temperatures or wind, respectively), others to multiple subsoil

depths (soil moisture). The NetCDF format allows to handle different spatio-temporal

dimensions: latitude, longitude and vertical (over surface and sub-surface) levels.

According to the Downstream Application and pre-Operational Service (DApOS) of

interest, the model outputs will be further elaborated e.g. aggregating time series (from

hourly to daily or monthly) and clipping the interested point(s) or area(s). Another

useful transformation could be the regridding of the rlat-rlon rotated pole grid to a lat-

lon grid. In rotated pole grid (as the one of HIGHLANDER climate model outputs) latitude

(lat) and longitude (lon) are two-dimensions variables and rlat-rlon (rotated pole

coordinates) as one-dimension variables, acting as dimensions of lat and lon. Different

algorithms can be selected to regrid, according to the variable of interest, and will be

implemented in the post-processing workflow through WP6.

https://earthsystemmodeling.org/regrid/#regridding-methods

Page 39

4 Satellite data harmonization

Satellite data can sense the whole Earth surface repeatedly, allowing the mapping along time

of multiple properties that characterize the specific sensed surfaces. The satellite missions are

run by different space agencies, like the Unites States National Aeronautics and Space

Administration (NASA); the European Space Agency (ESA); the Japanese Japan Aerospace

Exploration Agency (JAXA), among others. Each space agency has different on-going missions,

based on different sensing objectives, and targeting different Earth properties. Accordingly,

different sensors are employed on satellites, and for each differ harmonization requirements

apply.

At the present stage, Highlander is considering the use of the ESA Copernicus Sentinel 2 and

possibly Sentinel 1 missions’ datasets for its project purposes, and thus the focus of this chapter

is on the requirements for these datasets. If other data sources will be employed in the futures,

the requirements will be updated accordingly.

4.1 Copernicus INSPIRE

The INSPIRE directive aims at unifying and harmonizing cartographic information making

geospatial information easily searchable, accessible, and interoperable. This is reached

creating an EU spatial data infrastructure – a shared framework of standards, metadata, and

tools. INSPIRE will enable the sharing of environmental geospatial information -such as

satellite data and derived Earth properties- among public sector organizations, facilitating

public access to spatial information across Europe. Having access to comparable information

inside and across Member States is valuable for a range of applications, including carrying out

environmental impact assessments, coordinating responses to natural or man-made crises,

and even keeping our satellite navigation systems up-to-date.

The INSPIRE Directive is being implemented in a phased manner, with full EU-wide

implementation of all provisions targeted by the end of 2021.

Copernicus, the Europe’s Earth Observation program, relies heavily on accurate, up-to-date

and harmonized geospatial information for the production and validation of many of its

information products and services. The timely implementation of the INSPIRE directive should

increase the number of available datasets and services relevant to the Copernicus Services,

and considerably facilitate data discovery and access operations.

https://www.youtube.com/watch?v=K6tcUqMAPW8
https://inspire.ec.europa.eu/inspire-roadmap/61
http://copernicus.eu/
http://copernicus.eu/main/services

Page 40

The INSPIRE Directive requires that common Implementing Rules (IR) be adopted in several

specific areas (Metadata, Data Specifications, Network Services, Data and Service Sharing and

Monitoring and Reporting). A user must be able to find spatial data sets and services and to

establish whether they may be used and for what purpose; thus, Member States should provide

descriptions in the form of metadata, compatible and usable in a Community and trans-

boundary context. The INSPIRE Metadata regulation defines a set of metadata necessary to

allow identification of the information resource for which metadata is created, its classification

and identification of its geographic location and temporal reference, quality and validity,

conformity with implementing rules on the interoperability of spatial data sets and services,

constraints related to access and use, and organization responsible for the resource. Metadata

elements related to the metadata record itself are also necessary to monitor that the metadata

created are kept up to date, and for identifying the organization responsible for the creation

and maintenance of the metadata.

As part of the Global Monitoring for Environment and Security program, the Sentinel missions

support and use INSPIRE Metadata regulation. An XML INSPIRE file, including the set of

metadata characterizing the User Product, is included in the product itself. Full specification

regarding INSPIRE metadata and standards are provided in the Sentinel-2 and Sentinel-1

Products Specification Document.

4.2 Harmonization among different missions/sensors

For Highlander main project objectives, the ESA Sentinel 2 mission datasets will be employed.

In addition, the potential use of ESA Sentinel 1 data will be also considered in a later stage,

thanks to its weather independent capabilities.

SENTINEL-2 is a European wide-swath, high-resolution, multi-spectral imaging mission. The full

mission specification of the twin satellites flying in the same orbit but phased at 180°, is

designed to give a high revisit frequency of 5 days at the Equator.

SENTINEL-2 carries an optical instrument payload that samples 13 spectral bands: four bands

at 10 m, six bands at 20 m and three bands at 60 m spatial resolution. The orbital swath width

is 290 km. Each of the satellites in the SENTINEL-2 mission carries a single payload: the Multi-

Spectral Instrument (MSI).

The Sentinel-1 mission comprises a constellation of two polar-orbiting satellites, operating day

and night performing C-band synthetic aperture radar imaging, enabling them to acquire

imagery regardless of the weather. Sentinel-1 will work in a pre-programmed operation mode

to avoid conflicts and to produce a consistent long-term data archive built for applications

based on long time series. The constellation will cover the entire world’s land masses on a bi-

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload

Page 41

weekly basis. The Interferometric Wide Swath product will be considered for Highlander

project, thanks to its double polarization (VV and VH), high spatial resolution (10m), and wide

Earth coverage.

The Sentinel 1 and 2 bring information from different spectral regions, from visible to

microwave. While Sentinel 2 data offers a view on the reflectance properties of vegetation or

target features, Sentinel 1 report volumetric and surface scattering mechanisms, together

with information regarding water content of the target.

Data integration can be beneficial for multiple analysis, and it is usually performed in machine

learning -based models – foreseen in Highlander - using advanced algorithms able to exploit

such different information content.

4.3 Data harmonization and quality check

With respect to quality check, Copernicus data are already provided with information on their

quality for each scene, and no additional action is requested in this sense.

Harmonization of time series is often requested to derive reliable information collected in

multiple dates.

For Sentinel 1, a multitemporal calibration is foreseen in preprocessing steps, together with the

normalization with respect to local incidence angle (Gamma 0) for vegetation analysis. In

addition, layover and shadow masks are produced during preprocessing, to exclude SAR

distortion effects on slopes.

For Sentinel 2, the use of vegetation indices derived from different bands allows to normalize

the signal collected from different dates; the vegetation indices use is therefore to be preferred

in modeling when using inputs from time series. In addition, haze and cloud removal, or the

production of cloud-free multitemporal composites, are procedures that allow to exclude

invalid data caused by weather artifacts.

4.4 Harmonization with other non-satellite data sources

When additional remote sensing data are available, they could be used for specific applications

developed by Highlander. This is the case of airborne data, such as lidar or hyperspectral. To be

able to safely join these non-satellite inputs, routines to ensure data comparability must be set

up. These include the radiometric evaluation, to check that reflectance values are comparable;

also, geolocation accuracy must be evaluated, and coregistration must be performed if needed.

